Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Mutlu, Buesra" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Influence of boron incorporated biphasic calcium phosphate on mechanical, thermal, and biological properties of poly(vinylidene fluoride) membrane scaffold
    (Wiley, 2024) Mutlu, Buesra; Demirci, Fatma; Duman, Seyma
    In this paper, boron (B)-doped biphasic calcium phosphate (BCP)/poly(vinylidene fluoride) (PVDF) membrane scaffolds were developed by the combination of non-solvent induced phase separation and lyophilization processes. In addition, the effects of the synthesized B-incorporated BCP powders on the properties of the fabricated scaffolds were investigated. The physicochemical and morphological properties of the scaffolds were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The physical properties were evaluated by surface wettability and swelling measurements, whereas the mechanical properties were investigated by tensile strength measurements. The thermal behavior was determined by differential scanning calorimetry, the beta-crystallization ratio was calculated by FTIR, and the beta-phase structure was characterized by X-ray diffraction. The bioactivity was evaluated in the simulated body fluid, and the cytotoxicity of the scaffolds was also investigated by performing in vitro cell culture experiments. The results showed that the incorporation of B into the PVDF matrix improved the hydrophilicity while reducing the degree of swelling of the scaffolds. Tensile strength was slightly reduced by the powder content, but yet the strength of all scaffolds was mechanically compatible with native bone. Increasing the B content up to 0.5 and 1 wt.% was improved the thermal properties, the beta-crystalline phase fraction, and thus the piezoelectricity. Furthermore, B-doped BCP/PVDF-based scaffolds significantly promoted bioactivity, cell viability, and proliferation without cytotoxicity, compared to the PVDF scaffold, depending on the B content. In conclusion, our results indicate that the PVDF-based composites in the form of membrane scaffolds that support bone growth have the potential to be highly sought-after candidates in the field of biomedical applications.
  • Küçük Resim Yok
    Öğe
    Investigating the impact of coagulation bath temperature on the properties of biphasic calcium phosphate/poly(vinylidene fluoride)-based membrane scaffold via immersion precipitation
    (Wiley, 2025) Mutlu, Buesra; Demirci, Fatma; Duman, Seyma
    In this study, composite membrane scaffolds comprising poly(vinylidene fluoride) (PVDF) and boron-containing biphasic calcium phosphate (BCP) are developed using a non-solvent-induced phase separation technique at coagulation bath temperatures of -5, 0, 10, and 20 degrees C. The morphology, pore size and tensile strength of the scaffolds are primarily influenced by the bath temperature. Moreover, raising the bath temperature enhances the thermal properties and beta-crystalline phase fraction. Results demonstrate that changes in the temperature increase the surface hydrophilicity and reduce the degree of swelling. According to the in vitro bioactivity analysis, apatite growth is affected by the interactive relation between the surface of the samples and the simulated body fluid (SBF) medium, in addition to the superior bioactivity of the scaffolds. In vitro cytotoxicity assay results confirm the extensive spreading of L-929 cells on the sample surfaces, indicating the high biocompatibility of the scaffolds. Based on these favorable properties, the novel composite membranes produced, particularly at 20 degrees C coagulation bath temperature, may contribute to applications in bone tissue engineering. Fabrication of the BCP/PVDF-based membrane scaffold via immersion precipitation. image

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder