Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Murathan, Cengizhan" seçeneğine göre listele

Listeleniyor 1 - 6 / 6
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Almost cosympletic statistical manifolds
    (Natl Inquiry Services Centre Pty Ltd, 2020) Erken, İrem Küpeli; Murathan, Cengizhan; Yazla, Aziz
    This paper is a study of almost contact statistical manifolds. Especially this study is focused on almost cosymplectic statistical manifolds. We obtained basic properties of such manifolds. A characterization theorem and a corollary for the almost cosymplectic statistical manifold with Kaehler leaves are proved. We also study curvature properties of an almost cosymplectic statistical manifold. Moreover, examples are constructed.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Biharmonic Pseudo-Riemannian Submersions from 3-Manifolds
    (Univ Nis, Fac Sci Math, 2018) Erken, İrem Küpeli; Murathan, Cengizhan
    We classify the pseudo-Riemannian biharmonic submersion from a 3-dimensional space form onto a surface.
  • Yükleniyor...
    Küçük Resim
    Öğe
    A Generalized Wintgen Inequality for Legendrian Submanifolds in Almost Kenmotsu Statistical Manifolds
    (2019) Görünüş, Ruken; Erken, İrem Küpeli; Yazla, Aziz; Murathan, Cengizhan
    Main interest of the present paper is to obtain the generalized Wintgen inequality for Legendrian submanifolds in almost Kenmotsu statistical manifolds.
  • Yükleniyor...
    Küçük Resim
    Öğe
    A Neutral relation between metallic structure and almost quadratic ϕ-structure
    (2019) Gönül, Sinem; Erken, İrem Küpeli; Yayla, Aziz; Murathan, Cengizhan
    In this paper, we give a neutral relation between metallic structure and almost quadratic metric ?-structure. Considering N as a metallic Riemannian manifold, we show that the warped product manifold R ?f N has an almost quadratic metric ?-structure. We define Kenmotsu quadratic metric manifolds, which include cosymplectic quadratic manifolds when $\beta=0$. Then we give nice almost quadratic metric ?-structure examples. In the last section, we construct a quadratic ?-structure on the hypersurface $M^n$ of a locally metallic Riemannian manifold $M^{n+1}$
  • Küçük Resim Yok
    Öğe
    Riemannian Warped Product Submersions
    (Springer Basel Ag, 2021) Erken, İrem Küpeli; Murathan, Cengizhan
    In this paper, we introduce Riemannian warped product submersions and construct examples and give fundamental geometric properties of such submersions. On the other hand, a necessary and sufficient condition for a Riemannian warped product submersion to be totally geodesic, totally umbilic and minimal is given.
  • Yükleniyor...
    Küçük Resim
    Öğe
    A study of three-dimensional paracontact ((kappa)over-tilde, (mu)over-tilde, (nu)over-tilde)-spaces
    (World Scientific Publ Co Pte Ltd, 2017) Erken, İrem Küpeli; Murathan, Cengizhan
    This paper is a study of three-dimensional paracontact metric ((kappa) over tilde, (mu) over tilde, (nu) over tilde)-manifolds. Three-dimensional paracontact metric manifolds whose Reeb vector field xi is harmonic are characterized. We focus on some curvature properties by considering the class of paracontact metric ((kappa) over tilde, (mu) over tilde, (nu) over tilde)-manifolds under a condition which is given at Definition 3.1. We study properties of such manifolds according to the cases (kappa) over tilde > -1, (kappa) over tilde = -1, (kappa) over tilde < -1 and construct new examples of such manifolds for each case. We also show the existence of paracontact metric (-1, <(mu)over tilde> not equal 0, (nu) over tilde not equal 0) spaces with dimension greater than 3, such that (h) over tilde (2) = 0 but (h) over tilde not equal 0.

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder