Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Kucuker, Ahmet" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A new intelligent power quality disturbance classification in renewable and decentralized hydrogen-based energy systems using SwResNET hybrid model
    (Pergamon-Elsevier Science Ltd, 2025) Kucuker, Ahmet; Barakli, Burhan; Bayrak, Gokay; Basaran, Kivanc; Balaban, Georgiana
    In this study, a scalogram image-based Swin-Residual Network (SwResNET) hybrid method is proposed for the identification of power quality disturbances (PQDs) in a hydrogen energy-based distributed generator (HEBDGs). The proposed approach involves the creation of PQD scalogram images by applying spectrogram analysis to power signal data. This process generates a two-dimensional image that represents the frequency and time characteristics of the signal. These spectrogram images are then input into a SwResNET hybrid model for learning. The SwResNET hybrid model extracts features from the scalogram images and classifies the input signal based on the presence or absence of power quality disturbances. This paper used 21 different PQD events in HEBDGs for classification purposes. Furthermore, the proposed method was tested under noisy conditions. The data achieved from simulated results of the HEBDG system in Matlab/Simulink and empirical data collected in the laboratory collectively demonstrate that the proposed methodology exhibits exceptional performance in terms of 98.22 % accuracy and resistance to noise, surpassing existing state-of-the-art approaches.
  • Küçük Resim Yok
    Öğe
    An improved automated PQD classification method for distributed generators with hybrid SVM-based approach using un-decimated wavelet transform
    (Elsevier, 2021) Yılmaz, Alper; Kucuker, Ahmet; Bayrak, Gökay; Ertekin, Davut; Shafie-Khah, Miadreza; Guerrero, Josep M.
    Artificial intelligence (AI) approaches are usually coupled with the wavelet transform (WT) for feature extraction to classify the power quality disturbances (PQDs). Therefore, selecting a useful WT-based signal processing approach is required for a reliable classification, especially in real-time applications. In this study, a new hybrid, un-decimated wavelet-transform (UWT)-based feature extraction method using a support vector machine (SVM) with a "' a trous" algorithm is proposed to classify PQDs in distributed generators (DGs). The proposed method was performed in a real-time application of a DG system to classify PQDs. The derived features were tested on five different machine learning (ML) models by determining the most appropriate classification technique for the proposed UWT-based feature extraction method. An experimental DG system is constituted in the laboratory using a LabVIEW environment, and the proposed method is tested under different grid conditions. Besides, other well-known and studied conventional ML methods were also tested under 25 dB, 30 dB, and 40 dB noise and compared to the developed method. The experimental and simulation results show that the features extracted with the proposed UWT-based method provide much more successful results in classification than the existing wavelet methods in the literature. Furthermore, the proposed method's noise sensitivity performance is much better than other conventional wavelet algorithms, especially in real-time applications.
  • Küçük Resim Yok
    Öğe
    Automated classification of power quality disturbances in a SOFC&PV-based distributed generator using a hybrid machine learning method with high noise immunity
    (Pergamon-Elsevier Science Ltd, 2022) Yilmaz, Alper; Kucuker, Ahmet; Bayrak, Gokay
    In this study, a new hybrid machine learning (ML) method is developed to classify the power quality disturbances (PQDs) for a hydrogen energy-based distributed generator (DG) system. The proposed hybrid ML method uses a new approach for the feature extraction by using a pyramidal algorithm with an un-decimated wavelet transform (UWT). The pyramidal UWT method is used and investigated with the Stochastic Gradient Boosting Trees (SGBT) classifier to classify PQD signals for a Solid Oxide Fuel Cell & Photovoltaic (SOFC&PV)-based DG. The overfitting problem of SGBT in noisy signals is eliminated with the features extracted by pyramidal UWT. Mathematical, simulative and real data results confirm that the developed UWT-SGBT method can classify PQDs with high accuracy of up to 99.59%. The proposed method is also tested under noisy conditions, and the pyramidal UWT-SGBT method outperformed other ML with wavelet transform (WT)-based methods in the literature in terms of noise immunity. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
  • Küçük Resim Yok
    Öğe
    Deep learning-based multi-model ensemble method for classification of PQDs in a hydrogen energy-based microgrid using modified weighted majority algorithm
    (Pergamon-Elsevier Science Ltd, 2023) Bayrak, Gokay; Kucuker, Ahmet; Yilmaz, Alper
    In this study, new multiple deep classifiers with a modified Weighted Majority Voting (WMV)-based method are proposed to identify power quality disturbances (PQDs) in a hydrogen energy-based microgrid. In the proposed approach, closed-loop deep LSTM (Long Short Time Memory), deep CNN (Convolutional Neural Network), and hybrid (CNN-LSTM) models are used for automatic feature extraction and classification. Then, a modified WMV method is employed to ensemble the outputs of the three deep learning (DL) classifier models. The enhanced WMV mechanism performs an automatically updated weighting based on the validation results of the DL classification models, unlike voting methods in the literature. The improved WMV mechanism eliminates the challenges of using multiple DL classifiers in the voting system. The mathematical data results in LabVIEW, simulation results in Matlab/Simulink, and real data results in the laboratory show that the proposed method shows superior performance in accuracy and noise immunity to state-of-the-art methods.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder