Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Cingiz, Mustafa Özgür" seçeneğine göre listele

Listeleniyor 1 - 11 / 11
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A Comparative Study of Autoencoder Approaches to the Data Sparsity Problem in Recommender Systems
    (Ali KARCI, 2022) Bölük, Ecem; Cingiz, Mustafa Özgür
    Recommendation systems are systems that predict future preferences of users based on their past preferences. However, users may not always indicate their preferences to the systems. This causes data sparseness, which is one of the biggest problems when designing recommender systems. Autoencoders from deep learning algorithms solve the data sparsity problem by re-populating the sparse user matrix based on insights learned from the data. In this study, performances of deep learning algorithms were compared against data sparsity by using four different autoencoder models, namely Vanilla Autoencoder, Denoising Autoencoder, Sparse Autoencoder and Variational Autoencoder. The MovieLens-100K dataset, which contains 93.6% sparse data, was used as the data set. It has been observed that automatic encoder models provide more successful results in item-based recommendation systems than user based recommendation systems. It has been observed that Vanilla Autoencoder provides better performance in item-based recommendation systems, while Vanilla Autoencoder and Sparse Autoencoder provide very close performance in user-based recommendation systems.
  • Küçük Resim Yok
    Öğe
    Improving Breast Cancer Detection with Upsampling and Resizing Algorithms in Image Processing
    (Institute of Electrical and Electronics Engineers Inc., 2024) Gocer, Atakan; Cingiz, Mustafa Özgür
    Our study focuses on the detection of breast cancer using medical image analysis. The researchers explore the effectiveness of various oversampling methods in improving the performance of deep learning models for breast cancer detection. The dataset used in the study has a severe class imbalance with a disproportionate number of cancerous and non-cancerous examples. Six oversampling methods are evaluated in this study. Each oversampling method is applied to the dataset, and the augmented data is used to train deep learning models. The performance of each oversampling method is evaluated using metrics such as accuracy, precision, recall, and F1-score. The results demonstrate that oversampling methods significantly enhance the performance of deep learning models for breast cancer detection. SVM-SMOTE and ADASYN consistently outperform other methods, achieving the highest F1 scores on both ResNet-50 and AlexNet architectures. The findings also suggest that the choice of oversampling method has a substantial impact on model performance, emphasizing the importance of selecting an appropriate oversampling technique for imbalanced data. Overall, this study highlights the significance of addressing class imbalance in medical image analysis and provides valuable insights into the effectiveness of different oversampling methods in improving the performance of deep learning models for breast cancer detection. © 2024 IEEE.
  • Küçük Resim Yok
    Öğe
    k- Strong Inference Algorithm: A Hybrid Information Theory Based Gene Network Inference Algorithm
    (Springer, 2024) Cingiz, Mustafa Özgür
    Gene networks allow researchers to understand the underlying mechanisms between diseases and genes while reducing the need for wet lab experiments. Numerous gene network inference (GNI) algorithms have been presented in the literature to infer accurate gene networks. We proposed a hybrid GNI algorithm, k-Strong Inference Algorithm (ksia), to infer more reliable and robust gene networks from omics datasets. To increase reliability, ksia integrates Pearson correlation coefficient (PCC) and Spearman rank correlation coefficient (SCC) scores to determine mutual information scores between molecules to increase diversity of relation predictions. To infer a more robust gene network, ksia applies three different elimination steps to remove redundant and spurious relations between genes. The performance of ksia was evaluated on microbe microarrays database in the overlap analysis with other GNI algorithms, namely ARACNE, C3NET, CLR, and MRNET. Ksia inferred less number of relations due to its strict elimination steps. However, ksia generally performed better on Escherichia coli (E.coli) and Saccharomyces cerevisiae (yeast) gene expression datasets due to F- measure and precision values. The integration of association estimator scores and three elimination stages slightly increases the performance of ksia based gene networks. Users can access ksia R package and user manual of package via https://github.com/ozgurcingiz/ksia. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023.
  • Küçük Resim Yok
    Öğe
    Kavramlar Arası WordNet Tabanlı Anlamsal Benzerlik Değerlerinin Farklı Metriklerle Değerlendirilmesi
    (Osman SAĞDIÇ, 2020) Cingiz, Mustafa Özgür
    Kelimelerin anlam belirsizliği giderilmesi metin madenciliği, bilgi erişimi, doğal dil işleme gibi alanlarda yüksek doğruluklu başarı elde edilmesi için önemli bir adımdır. Kelimelerin bağlam içerisinde yer alan doğru anlamı belirlemek için sözlük tabanlı yaklaşımlar, eğiticili- eğiticisiz öğrenmede kullanılan etiketli-etiketsiz külliyatlar, kelime gömme gibi yeni yaklaşımlar sıklıkla kullanılmaktadır. Çalışmamız kapsamında ekonomi, teknoloji ve spor kategorilerine ait RSS haberleri haber sağlayıcılarından elde edilmiştir. Çalışma kapsamında RSS haber beslemelerindeki kelimeler kategorilere göre terim frekansı- ters doküman frekansı (tf-idf) ağırlandırması gerçekleştirilmiştir. Kelimeler arasındaki anlamsal benzerliklerin belirlenmesi için elle etiketlenmiş hiyerarşik çizge tabanlı sözlük olan WordNet tabanlı yaklaşımlar kullanılmıştır. İlk adımda tf-idf ağırlıklarına göre belirlenen kelimeler WordNet tabanlı Wu-Palmer, Lin ve Jiang – Conrath anlamsal benzerlik yaklaşımlarına göre tekrar sıralanmıştır. Aynı kategoride yer alan tf-idf değeri en yüksek elli kelimenin Kategorik Anlamsal İlişki Değeri (KAİD) hesaplanarak kelimelerin kategorilere ait anlamsal ilişki değerleri belirlenmiş. En yüksek KAİD değerine sahip 3, 5, 10 ve 20 kelime tüm kategoriler için çıkartılmıştır. Elde edilen kelimeler elle etiketlenmiş ve tf-idf ağırlıkları kullanılarak sıralanmış kelimelerle karşılaştırılmıştır. Karşılaştırma sonuçlarına göre iki katmanlı eleme ile anlamsal ilişkileri çıkarılan kelimeler ile insan tarafından belirlenen kelimelerin benzerlik oranının yüksek olduğu sonucu elde edilmiştir. WordNet tabanlı yöntemlerle elde edilen ve sıralanan kelimeler aynı zamanda tf-idf ağırlıklandırmasıyla elde edilen ve sıralanan kelimelerle de karşılaştırılmıştır. Sonuçlara göre ağırlıklandırma ile sıralanan kelimelerde örtüşme oranı insan algısıyla elde edilen kelimelerden daha düşük çıkmıştır. İki katmanlı değerlendirme ile oluşturulan kelimelerin anlamsal ilişki değerleri kategori uzayında görselleştirilerek anlamsal ilişki değerlerinin başarısı değerlendirilmiştir. İleriki çalışmalarda iki katmanlı değerlendirmeyle elde edilen kelimeler bilgi edinimi, metin özetleme, metin sınıflandırma alanında kullanılması hedeflenmektedir.
  • Küçük Resim Yok
    Öğe
    Keyword-based Sentiment Analysis of Covid-19 Related Tweets
    (Bursa Teknik Üniversitesi, 2021) Cingiz, Mustafa Özgür; Çeliktaş, Ece
    With the emergence of Web 2.0, internet users share their feelings, thoughts and ideas with other people using social networks. Understanding people's thought analysis is important for examining  marketing and user feedback in social networks. For this reason, sentiment analysis on social networks with machine learning algorithms is a popular field of study. Our study is based on thesentiment analysis of people against the new coronavirus, which affects the world. People can have different moods due to pandemia. The governance of mental issues must be observed to manage the pandemic time period more successfully. In this article, we retrieved 387,953 tweets due to the ten most frequently used COVID-19 related keywords. The most frequently used keywords about COVID-19 which enable to obtain and assess the reaction of Twitter users are investigated. Even if COVID-19 is a health issue and tweets about COVID-19 is expected to contain negative content, we found positive, negative and neutral tweets to analyze texts using sentiment analysis and machine learning approaches. We applied four classifiers like logistic regression, multinomial naive Bayes, support vector machines and decision tree. These classifiers are well studied and utilized in many studies which we mentioned in our study. The performance of the support vector machine, decision tree and logistic regression classifiers are close to each other. The lowest F-score is obtained from multinominal naive Bayes classifier. The classification results for each negative, neutral and positive class were compared separately in our study.
  • Küçük Resim Yok
    Öğe
    Kullanıcı Tabanlı ve Öğe Tabanlı İşbirlikçi Filtreleme ile Kümeleme Algoritmalarının Değerlendirilmesi
    (Osman SAĞDIÇ, 2021) Cingiz, Mustafa Özgür; Marangoz, Kadriye
    Öneri sistemleri, kullanıcıların memnuniyetini ve bağlılığını arttırıp, kullanıcılara kişiselleştirilmiş sistem deneyimini yaşatabilmek için geliştirilmiştir. Öneri sistemleri sayesinde kullanıcılar tercihlerine en uygun olan sonucu en az çaba göstererek bulabilmektedirler. Kullanıcıya özel öneri sistemlerinin önemi son yıllarda giderek artmakta ve filmler, şarkılar, haberler başta olmak üzere çeşitli alanlarda uygulanmaktadır. Öneri sistemleri hafıza tabanlı ve model tabanlı olmak üzere ikiye ayrılmaktadır. Model tabanlı filtreleme yaklaşımlarından olan işbirlikçi filtreleme yöntemleri, öneri sistemlerinde yaygın olarak kullanılmaktadır. Bu çalışmada Jester veri seti içerisinde bulunan şakalar kullanıcı tabanlı ve öğe tabanlı işbirlikçi filtreleme yöntemleri ile kümelenmiştir. Sonuçlar Davies–Bouldin İndeksi, Dunn İndeksi ve Silhouette Katsayısı değerlerine göre karşılaştırılmıştır. Karşılaştırmaların sonuçlarına göre öğe tabanlı işbirlikçi filtreleme yönteminin kullanıcı tabanlı işbirlikçi filtreleme yöntemine göre daha iyi bir doğruluk sağladığı görülmüştür.
  • Küçük Resim Yok
    Öğe
    Normalizasyon Yöntemlerinin RNA- Seq Verileri Üzerinde Çıkarılan Gen Birlikte İfade Edilme Ağlarının Performansına Etkisi
    (Duzce University, 2021) Cingiz, Mustafa Özgür
    Protein sentezi sürecinde meydana gelen farklılaşmaların metabolik hastalıklar, kanser gibi kompleks hastalıklara neden olduğu farklı çalışmalarda belirtilmiştir. Protein sentezindeki değişimlerin anlaşılması için proteinleri oluşturan genlerin belirlenmesi ve bu genlerin diğer genlerle ilişkilerin ortaya çıkarılması gerekmektedir. Yeni nesil dizileme teknikleriyle hastalıklara neden olan moleküler düzeyde ilişkilerin doğruluklu olarak belirlenmesi kolaylaşmıştır. Gen birlikte ifade edilme (GBİE) ağları düzenleyen-düzenleyici ilişkisi içermeden benzer biyolojik süreçlere katılan genler arasındaki ilişkileri araştırmacılara göstermektedir. Çalışmamızda RNA-Seq verileri kullanılarak prostat kanseriyle ilişkili GBİE ağları elde edilmiştir. RNA- Seq verileri farklı nükleotit uzunluğundaki genlerden ve farklı sayıda okumalar içeren örneklerden oluştuğu için normalizasyon teknikleri moleküler ilişki çıkarımında önem taşımaktadır. Çalışmamızda gen birlikte ifade edilme ağları ham veri ve farklı iki normalizasyon yaklaşımı olan M- Değerinin Kırpılmış Ortalaması (MDKO), Göreceli Log İfadesi (GLİ) hesaplamalarıyla ayrı ayrı oluşturulmuş veriler üzerinde çıkartılarak örtüşme analizi ve topolojik performans değerlendirilmesi yapılmıştır. Örtüşme analizine göre normalize edilmiş RNA- Seq verileri kullanarak elde edilmiş gen birlikte ifade edilme ağlarının ham verilere göre daha fazla literatürde bulunan ilişkileri tahmin ettiği gözlemlenmiştir. İki normalizasyon yöntemiyle elde edilen GBİE'lere ait örtüşme analizi performans metrikleri değerleri ise birbirlerine yakın çıkmıştır. Topolojik değerlendirme sonuçlara göre normalize edilmiş veriler üzerinde elde edilen GBİE ağlarının ölçeksiz ağ tanımına daha yakın olduğu gözlemlenmiştir. Çalışmamızda aynı zamanda ham ve normalize edilmiş veriler üzerinde GBİE ağ çıkarım algoritmaları olan C3NET, ARACNE ve WGCNA yaklaşımlarının performansları da karşılaştırılmıştır.
  • Küçük Resim Yok
    Öğe
    Başlıksız
    (Elsevier, 2019) Cingiz, Mustafa Özgür; Diri, Banu
    Advances in DNA sequencing technologies enable researchers to integrate various biological datasets in order to reveal hidden relations at the molecular level. In this study, we present a two-tiered combinatorial structure (TTCS) to integrate gene co-expression networks (GCNs) that are inferred from microarray gene expression, RNA-Seq and miRNA-target gene data. In the initial phase of TTCS, we derive GCNs by using gene network inference (GNI) algorithms for each dataset. In the first and second integration phases, we use straightforward methods: intersection, union and simple majority voting to combine GCNs. We use overlap, topological and biological analyses in performance evaluation and investigate the integration effects of GCNs separately for all phases. Our results prove that the first integration phase has limited contribution on performance. However, combining the biological datasets in the second phase significantly enhances the overlap and topological performance analyses.
  • Küçük Resim Yok
    Öğe
    Başlıksız
    (MDPI, 2022) Unudulmaz, Ahmet; Cingiz, Mustafa Özgür; Kalipsiz, Oya
    Many projects that progress with failure, processes managed erroneously, failure to deliver products and projects on time, excessive increases taking place in costs, and an inability to analyze customer requests correctly pave the way for the use of agile processes in software development methods and cause the importance of test processes to increase day by day. In particular, the inability to properly handle testing processes and risks with time and cost pressures, the differentiation of software development methods between projects, the failure to integrate risk management, and risk analysis studies, conducted within a company/institution, with software development methods also complicates this situation. It is recommended to use agile process methods and test maturity model integration (TMMI), with risk-based testing techniques and user scenario testing techniques, to eliminate such problems. In this study, agile process transformation of a company, operating in factory automation systems in the field of industry, was followed for two and a half years. This study has been prepared to close the gap in the literature on the integration of TMMI level 2, TMMI level 3, and TMMI level 4 with SAFE methodology and agile processes. Our research has been conducted upon the use of all TMMI level sub-steps with both agile process practices and some test practices (risk-based testing techniques, user scenario testing techniques). TMMI coverage percentages have been determined as 92.85% based on TMMI level 2, 92.9% based on TMMI level 3, and 100% based on TMMI level 4. In addition, agile process adaptation metrics and their measurements between project versions will be shown, and their contribution to quality will be mentioned.
  • Küçük Resim Yok
    Öğe
    Başlıksız
    (Springer Science and Business Media Deutschland GmbH, 2021) Cingiz, Mustafa Özgür; Biricik, Göksel; Diri, Banu
    Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene–gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA–target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs.
  • Küçük Resim Yok
    Öğe
    Başlıksız
    (Institute of Electrical and Electronics Engineers Inc., 2019) Cingiz, Mustafa Özgür; Diri, B.
    In recent years, different biological data sets obtained by the next generation sequencing techniques have enhanced the analysis of the underlying molecular interactions of diseases. In our study we apply ARNetMiT, C3NET, WGCNA and ARACNE algorithms on microRNA-Target gene datasets to infer gene coexpression networks of breast, prostate, colon and pancreatic cancers. Gene coexpression networks are evaluated according to their topological and biological features. WGCNA based gene coexpression networks fits to scale free network topology more than other gene coexpression networks. In biological assessment there is no obvious difference found between gene coexpression networks which derived from different algorithms. © 2019 IEEE.

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder