Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ust, Yasin" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Energy, economic and environmental analysis and comparison of the novel Oxy- combustion power systems
    (Yildiz Technical Univ, 2022) Ozsari, Ibrahim; Ust, Yasin
    Oxy-combustion technologies are clean energy systems with zero emission; they have great potential when considering global warming and climate change. This study presents a detailed thermodynamic analysis in terms of energy, environment, and economy. Consequently, the results obtained for an oxy-combustion power system are presented in comparison with a conventional gas turbine power system. The results are presented as a function of the pressure ratio with regard to net power, input heat, system efficiency, specific fuel consumption, equivalence ratio, fuel-air ratio, capital investment cost, fuel cost, oxygen cost, total cost, electricity revenue, and net profit. In addition, the study calculates the pollutant emissions from non-oxy-combustion systems and investigates the environmental costs. The pressure ratio for maximum net power has been obtained as 20.8 in the conventional gas turbine power system. Similarly, the pressure ratios for maximum net power in oxy-combustion power cycles with 26%, 28%, and 30% oxygen ratios are 23.3, 27.4 and 29.7, respectively. Results from 24% to 30% have been displayed to observe the effect of reactant oxygen in the oxy-combustion power cycles. The optimum cycle conditions have been determined by calculating the costs of system components, total revenues, and net profits at pressure ratios of 10, 20, 30 and 40. Finally, the results reveal the pressure ratio should be reduced to minimize the total costs per cycle. For maximum net profit, the pressure ratio in a conventional gas turbine power cycle has been calculated as 15.9; similarly, the pressure ratios in oxy-combustion power cycles with 26%, 28%, and 30% oxygen ratios have been respectively calculated as 12.8, 15.2 and 16.4.
  • Küçük Resim Yok
    Öğe
    Exergetic performance analysis and comparison of oxy-combustion and conventional gas turbine power cycles
    (Yildiz Technical Univ, 2023) Ozsari, Ibrahim; Ust, Yasin; Karakurt, Asim Sinan
    Oxy-combustion technologies are green energy systems and an impressive solution to climate change and global warming. This study presents a detailed exergy analysis obtained for oxy-combustion power systems in comparison with a conventional gas turbine power system. The results include net power, overal thermal efficiency, exergy destruction, exergy efficiency, power density, exergetic performance coefficient (EPC), ecological performance coefficient (ECOP), effective ecological power density (EFECPOD), and mean exergy density (MED), and cost of power density (COPD), which are calculated as functions of pressure and oxygen ratios. The conventional gas turbine power system obtained a pressure ratio for maximum net power of 20.8. Similarly, oxy-combustion power cycles at 26%, 28%, and 30% oxygen ratios have respective pressure ratios for maximum net power of 23.3, 27.4, and 29.7. Results from 24%-30% oxygen ratios are displayed to show the reactant oxygen's effect on the oxy-combustion power cycles. Increases in the pressure ratio show decreases in the total exergy destruction in both the conventional gas turbine power system and the oxy-combustion power systems. Meanwhile, increases in the pressure ratio show increases in the total efficiency, power density, exergy efficiency, EPC, EFFECPOD, and MED in both the conventional gas turbine and the oxy-combustion power systems. In addition, increases in the oxygen ratio in the oxy-combustion power systems show different characteristics for these parameters based on the pressure ratio of the cycle. In terms of COPD, conventional gas turbine power systems are more advantageous than oxy-combustion power systems. Optimum COPD is obtained at a pressure ratio of 25.6.

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder