Yazar "Sharma, Swati" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Electrochemical treatment of sunflower oil refinery wastewater and optimization of the parameters using response surface methodology(Pergamon-Elsevier Science Ltd, 2020) Sharma, Swati; Aygün, Ahmet; Simsek, HalisCombined electrocoagulation (EC) + electrooxidation (EO) process was compared with electrochemical peroxidation (ECP) treatment process to treat sunflower oil refinery wastewater. The effect of applied current density, pH/H2O2 dosage, and operation time in the removal of chemical oxygen demand (COD), soluble COD, total organic carbon, and dissolved organic carbon (DOC) were studied using Box Behnken Design. In EC process, decrease in organic concentration was observed as the time and current density increased. The optimized conditions for EC process were achieved at pH 6.07 when a current density of 5.69 mA cm(-2) was applied for 18 min. The EO removed about 90% of DOC at an optimized pH of 5.27 and current density of 11.56 mA cm(-2) when operated for 400 min. The combined EC + EO process was successful compare to ECP process in removing between 90 and 95% of organic pollutant from the sunflower oil refinery wastewater. The energy consumption was calculated to compare between the process efficiency of EC + EO and ECP and found that EC + EO was more efficient process. The reaction rate followed a first order kinetics validated with a high R-2 value (0.96). (C) 2020 Elsevier Ltd. All rights reserved.Öğe Organic pollutant removal from edible oil process wastewater using electrocoagulation(Iop Publishing Ltd, 2018) Sharma, Swati; Can, Orhan Taner; Hammed, Monsur; Nawarathna, Dharmakeerthi; Simsek, HalisWastewaters generated from vegetable oil industries contain a high concentration of organic pollutants that are detrimental to the aquatic ecosystem. Electrochemical processes are gaining importance in the treatment of inorganic and resistant organic pollutants in wastewaters. In this study, electrocoagulation (EC) was applied to remove organic pollutants and oil and grease from canola oil wastewater using aluminum (Al) and iron (Fe) electrodes. The application of EC in the wastewater achieved more than 80% removal of organic carbon and nearly 100% removal of suspended solids (SS). The effectiveness of EC is influenced mainly by current density, pH, electrolyte (NaCl), electrode contact time and electrode type. It was observed that Al electrode combination yielded better removal at a lesser time compared to that of Fe electrodes. However, varying current densities had its significance in terms of coagulation time only. Increase in current density achieved decrease in coagulation time. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater