Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sahin, Canberk" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A Comparative Study for Localization of Forgery Regions in Images
    (Ieee-Inst Electrical Electronics Engineers Inc, 2025) Ozden, Mustafa; Sahin, Canberk
    As computer technologies and image processing software have advanced, it has become progressively easier to produce simple fake or forged images by altering digital images without leaving any discernible trace. There is a significant need to detect manipulated regions in images in crucial fields such as politics, law, and forensic medicine. In this study, we propose a method that combines the traditional techniques, such as Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT), with the advantages of deep learning methods to detect manipulated regions in forged images. The proposed method involves designing an architecture where DWT and DCT are used in parallel with DenseNet based Convolutional Neural Network (CNN). To evaluate the effectiveness of this method, we implemented three alternative approaches: one that uses only DCT and CNN, another that uses only DWT and CNN, and a third that employs only CNN without either transformation. In total, four different methods were tested on eight datasets, and their performance was compared using metrics such as accuracy, precision, recall, dice similarity coefficient, and F1 score. The results from these comparisons clearly indicate the effectiveness and high classification accuracy of the proposed method. By leveraging the combined strengths of traditional image processing techniques and advanced deep learning algorithms, the proposed method demonstrates superior capability in detecting manipulated regions in forged images, thus offering a robust solution for applications in forensic field.

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder