Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ozer, Hayrunnisa" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Effect of Milling Time and Multi-walled Carbon Nanotube Content on Structure and Properties of an Al-Cu-Mg/MWCNT Composite Produced by Different Dispersion Methods and Powder Metallurgy
    (Springer, 2025) Ozer, Hayrunnisa; Varol, Temel; Canpolat, Ozlem
    The effectiveness of multi-walled carbon nanotubes (MWCNTs) dispersion in Al-Cu-Mg alloy matrix composites reinforced with carbon nanotubes is one of the most important factors influencing the homogeneity and the mechanical and physical properties of the composite. This study applied conventional, magnetic, ball milling and ultrasonic dispersion techniques to uniformly distribute MWCNTs. Most effective dispersion occurred after 45 min in ultrasonic stirring. Al-Cu-Mg alloy powder was reinforced with MWCNTs at four rates (0.125, 0.25, 0.5 and 1 wt.%) and three ball milling times (0.5 h, 1.5 h and 3 h) to make Al-Cu-Mg/MWCNT composites. After 3 h of milling, the composite powders had an average particle size of 10-58 mu m. The maximum density value of 0.125 wt.% MWCNTs reinforced composites milled for 3 h is 2.733 g/cm(3), while the minimum density 1 wt.% MWCNTs reinforced composites milled for 0.5 h is 2.609 g/cm(3). The tensile strength increased gradually as the amount of MWCNTs increased, and it reached a maximum value of 202 MPa for 0.5 wt.% MWCNTs reinforced Al-Cu-Mg alloy matrix composites. This is an increase of 61% in comparison with the tensile strength of the Al-Cu-Mg alloy produced under the same conditions (125.6 MPa).
  • Küçük Resim Yok
    Öğe
    PLA-Based 3D Porous Scaffolds with Bioceramics for Load-Bearing Bone Substitutes
    (Springer Nature, 2025) Ozer, Hayrunnisa; Mutlu, Büşra; Demirci, Fatma; Duman, Seyma
    Three-dimensional (3D) printing technology, which has been widely adopted in the field of regenerative medicine, represents a high-speed manufacturing process for biomaterials. Three-dimensional printing technology enables the precise fabrication of biomaterial scaffolds, thereby facilitating the creation of intricate structures that are tailored to the specific characteristics of the defect site. In this study, three-dimensional printing was employed to prepare composite scaffolds comprising poly (lactic acid) and monticellite. The composite scaffolds were optimized through material characterization, mechanical testing, density measurements, and in vitro swelling assessments. The results demonstrated that the Poly (lactic acid)/monticellite composites proposed in this study were highly printable, exhibiting tunable mechanical strength and density in conjunction with the monticellite component. Additionally, the in vitro swelling properties were demonstrated to be superior to those of the neat poly (lactic acid) scaffold. This composite scaffolding of poly (lactic acid) and monticellite represents a promising strategy for load-bearing bone substitutes. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder