Yazar "Nacar, Sinan" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Prediction of suspended sediment loading by means of hybrid artificial intelligence approaches(Springer International Publishing Ag, 2019) Yilmaz, Banu; Aras, Egemen; Kankal, Murat; Nacar, SinanThe main aim of the research is to use the artificial neural network (ANN) model with the artificial bee colony (ABC) and teaching-learning-based optimization (TLBO) algorithms for estimating suspended sediment loading. The stream flow per month and SSL data obtained from two stations, Inanli and Altinsu, in Coruh River Basin of Turkey were taken as precedent. While stream flow and previous SSL were used as input parameters, only SSL data were used as output parameters for all models. The successes of the ANN-ABC and ANN-TLBO models that were developed in the research were contrasted with performance of conventional ANN model trained by BP (back-propagation). In addition to these algorithms, linear regression method was applied and compared with others. Root-mean-square and mean absolute error were used as success assessing criteria for model accuracy. When the overall situation is evaluated according to errors of the testing datasets, it was found that ANN-ABC and ANN-TLBO algorithms are more outstanding than conventional ANN model trained by BP.Öğe Spatial Forecasting of Dissolved Oxygen Concentration in the Eastern Black Sea Basin, Turkey(Mdpi, 2020) Nacar, Sinan; Bayram, Adem; Baki, Osman Tugrul; Kankal, Murat; Aras, EgemenThe aim of this study was to model, as well as monitor and assess the surface water quality in the Eastern Black Sea (EBS) Basin stream, Turkey. The water-quality indicators monitored monthly for the seven streams were water temperature (WT), pH, total dissolved solids (TDS), and electrical conductivity (EC), as well as luminescent dissolved oxygen (LDO) concentration and saturation. Based on an 18-month data monitoring, the surface water quality variation was spatially and temporally evaluated with reference to the Turkish Surface Water Quality Regulation. First, the teaching learning based optimization (TLBO) algorithm and conventional regression analysis (CRA) were applied to three different regression forms, i.e., exponential, power, and linear functions, to predict LDO concentrations. Then, the multivariate adaptive regression splines (MARS) method was employed and three performance measures, namely, mean absolute error (MAE), root means square error (RMSE), and Nash Sutcliffe coefficient of efficiency (NSCE) were used to evaluate the performances of the MARS, TLBO, and CRA methods. The monitoring results revealed that all streams showed the same trend in that lower WT values in the winter months resulted in higher LDO concentrations, while higher WT values in summer led to lower LDO concentrations. Similarly, autumn, which presented the higher TDS concentrations brought about higher EC values, while spring, which presented the lower TDS concentrations gave rise to lower EC values. It was concluded that the water quality of the streams in the EBS basin was high-quality water in terms of the parameters monitored in situ, of which the LDO concentration varied from 9.13 to 10.12 mg/L in summer and from 12.31 to 13.26 mg/L in winter. When the prediction accuracies of the three models were compared, it was seen that the MARS method provided more successful results than the other methods. The results of the TLBO and the CRA methods were very close to each other. The RMSE, MAE, and NSCE values were 0.2599 mg/L, 0.2125 mg/L, and 0.9645, respectively, for the best MARS model, while these values were 0.4167 mg/L, 0.3068 mg/L, and 0.9086, respectively, for the best TLBO and CRA models. In general, the LDO concentration could be successfully predicted using the MARS method with various input combinations of WT, EC, and pH variables.Öğe SUSPENDED SEDIMENT LOAD PREDICTION IN RIVERS BY USING HEURISTIC REGRESSION AND HYBRID ARTIFICIAL INTELLIGENCE MODELS(Yildiz Technical Univ, 2020) Yımaz, Banu; Aras, Egemen; Kankal, Murat; Nacar, SinanAccurate prediction of amount of sediment load in rivers is extremely important for river hydraulics. The solution of the problem has been become complicated since the explanation of hydraulic phenomenon between the flow and the sediment on the river is dependent many parameters. The usage of different regression methods and artificial intelligence techniques allows the development of predictions as the traditional methods do not give enough accurate results. In this study, data of the flow and suspended sediment load (SSL) obtained from Karsikoy Gauging Station, located on Coruh River in the north-eastern of Turkey, modelled with different regression methods (multiple regression, multivariate adaptive regression splines) and artificial neural network (ANN) (ANN-back propagation, ANN teaching-learning-based optimization algorithm and ANN-artificial bee colony). When the results were evaluated, it was seen that the models of ANN method were close to each other and gave better results than the regression models. It is concluded that these models of ANN method can be used successfully in estimating the SSL.