Yazar "Karahan, Mehmet" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Investigation of the Properties of Natural Fibre Woven Fabrics as a Reinforcement Materials for Green Composites(Inst Chemical Fibres, 2016) Karahan, Mehmet; Özkan, Fatma; Yıldırım, Kenan; Karahan, NevinThe mechanical properties of flax and jute woven fabrics were investigated and compared with each other. Mechanical properties of the yarns and fabrics were characterised and compared for each scale. The fabric structure, yarn physical properties, fibre cross-section, and fibre molecular structure parameters of the fabric were investigated. FTIR and TGA thermogram analyses were applied to the fabrics to characterise them. The fabric tensile strength was attributed to the composite tensile strength, but there was not a direct relation. The tensile strength of natural fibre fabrics was determined as significantly reduced depending on the temperature increase. This condition should be considered as an important limitation for composite applications.Öğe Low Velocity Impact Behaviour of Aramid and UHMWPE Composites(Inst Chemical Fibres, 2015) Karahan, Mehmet; Yıldırım, KenanThe most popular method to produce composites for ballistic applications is to use aramid and ultra high molecular weight polyethylene (UHMWPE) fibers as reinforcement materials in different matrices. The composite materials used in this type of application, especially those used as armoring materials for explosions, are subjected to a very high level of energy. In this study, the effect of the reinforcement material type and cross-plied condition of reinforcement were examined using high-level impact tests. The impact tests were performed at low speed but high energy, and thus the behaviour of the composite materials that were exposed to high-level impact energy could be examined. According to the results, the UD aramid composite produced the best results with respect to high-level impact tests. In addition, mass optimisation could be achieved without the loss of the high-level impact energy by preparing a hybrid composite with UD UHMWPE and UD aramid fibers.Öğe The solar properties of fabrics produced using different weft yarns(Sage Publications Ltd, 2018) Yıldırım, Kenan; Kanber, Asuman; Karahan, Mehmet; Karahan, NevinWoven fabric is composed of two yarns system, known as the weft and warp yarns. Each yarn system has an effect on the physical, performance, and optical properties of fabric. Any change in one or both yarn systems greatly alters the fabric properties. The solar and luminous properties of fabrics are also affected by altering the weft yarn or both yarn systems. This study investigates the effect of altering the weft yarn system on the solar and luminous properties of fabrics. The differences in the weft yarn in the fabrics were based on the weft yarn structure, including the yarn linear density, amount of twist on the yarn, yarn evenness, hairiness, spinning method, fiber composition of the yarn, and weft density of the fabric. The fabric luminous and solar properties were measured according to EN 14500 using an ultraviolet-visible-near-infrared (UV/VIS/NIR) test device and calculated from the EN 410 standard test method. According to a variance analysis, the weft density factor is shown to have an effect on the solar properties of the fabric, especially the UV transmittance properties of the fabric. Although non-parametric test results with a 95% confidence level show that the yarn structure does not influence the solar characteristics of the fabric, we show from the test results that the yarn structure influences the solar properties of the fabric. Yarn hairiness was the dominant factor for the IR and visible portions of the solar radiation spectra. In the UV region, the fiber composition factor was found to be important. The effect of the yarn linear density was similar to the effect of the weft density factor. The solar transmittance decreases and the reflectance increases when the number of weft yarns per unit length is increased and the yarn linear density in the Ne numbered system is decreased. Increasing the yarn hairiness decreases the transmittance in the IR portion of the solar spectra. The degree of influence that the yarn structure has on the solar properties (with the exception of the UV portion) of the fabric was dominated by the number of weft yarns per unit length. The transmittance properties of the fabric were more affected by altering the yarn structure than the reflectance and absorbance properties.