Yazar "Jun, Martin Byung-Guk" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Design and fabrication of auxetic stretchable force sensor for hand rehabilitation(Iop Publishing Ltd, 2015) Ko, Junghyuk; Bhullar, Sukhwinder Kaur; Cho, Yonghyun; Lee, Patrick C.; Jun, Martin Byung-GukUsing a melt electrospinning technique, stretchable force sensors were designed for use in an application of hand rehabilitation. The main purpose of this study was to verify that the use of auxetic sensors improved hand rehabilitation practices when compared to their absence. For this study, novel stretchable poly (epsilon-caprolactone) (PCL) force sensors were fabricated into the following formations: auxetic microfiber sheets (AMSs), auxetic solid sheets (ASSs), microfiber sheets (MSs), and solid sheets (SSs). A femtosecond laser device was used to make an auxetic structure in the MSs and SSs. Subsequently, these sensors were coated with gold particles to make them conductive for the electrical current resistance assays. Through the cycles of applied stress and strain, auxetic structures were able to retain their original shape once these forces have been dissipated. This stretchable sensor could potentially measure applied external loads, resistance, and strain and could also be attachable to a desired substrate. In order to verify the workability and practicality of our designed sensors, we have attempted to use the sensors on a human hand. The AMS sensor had the highest sensitivity on measuring force and resistance among the four types of sensors. To our knowledge, this is the first study to form a stretchable force sensor using a melt electrospinning technique.Öğe Development of Bioactive Packaging Structure Using Melt Electrospinning(Springer, 2015) Bhullar, Sukhwinder Kaur; Özsel Kaya, Burçak; Jun, Martin Byung-GukRecent research attention is shifting towards the use of bioactive antimicrobial and/or antioxidant packaging materials and their fabrication with non-toxic techniques. The process of melt electrospinning produce fibers from polymer melt without any solution hence environmentally friendly because use of toxic solvents can be avoided. The objectives of this study were fabrication of biodegradable polymeric microfibrous structure using melt electrospinning and characterization of the effect of plant based natural extract on fabricated structure. We found that incorporation of this structure with natural extract provide sufficient support for bioactive compounds without changing thermal stability, physical properties and amorphous phase and also increase the antimicrobial efficacy. Moreover, homogeneously dispersion and good interaction of polymer and natural plant based extract demonstrating the potential of such polymer blend as a bioactive antimicrobial material for packaging industry including especially food and healthcare.