Yazar "Gulkan, Polat" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Impact of Joint Modeling Approach on Performance Estimates of Older-Type RC Buildings(Earthquake Engineering Research Inst, 2017) Bayhan, Beyhan; Ozdemir, Gokhan; Gulkan, PolatThe behavior of beam-column connections has usually been ignored in the modeling process due to its complexity and relatively recent awareness of its possible impact on response. This study presents the features of modeling unrein-forced beam-column joints in estimating seismic demands. A representative RC frame is subjected to strong ground motions. Through nonlinear dynamic analyses, base shear, roof displacement, inter-story drift and joint rotation are noted. The dynamic analyses are performed comparatively through two analytical models with rigid and flexible joint assumptions. In the flexible joint model, shear deformation at the beam-column joint and bond-slip deformation at the beam-column interface are simulated through a previously verified analytical representation. Results indicate that introducing unreinforced beam-column joint behavior to the model may lead to almost two times larger seismic demands compared to those obtained from rigid connection assumption. Thus, the performance assessment of such buildings may conclude erroneously with underestimated seismic demands and damage levels when inelastic actions in the joints are ignored. However, in some cases, lower seismic demands can also be obtained for the flexible joint model.Öğe Variations in the hysteretic behavior of LRBs as a function of applied loading(Techno-Press, 2018) Ozdemir, Gokhan; Bayhan, Beyhan; Gulkan, PolatThe study presented herein focused on the change in hysteretic force-deformation behavior of lead rubber bearings (LRBs). The material model used to idealize response of LRBs under cyclic motion is capable of representing the gradual attrition in strength of isolator unit on account of lead core heating. To identify the effect of loading history on the hysteretic response of LRBs, a typical isolator unit is subjected to cyclic motions with different velocity, amplitude and number of cycles. Furthermore, performance of an LRB isolated single degree of freedom system is studied under different seismic input levels. Finally, the significance of lead core heating effect on LRBs is discussed by considering the current design approach for base isolated structures. Results of this study show that the response of an LRB is governed strongly by the amplitude and number of cycles of the motion and the considered seismicity level.