Yazar "Gengec, Erhan" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Anodic Oxidation of Effluents from Stages of MBR-UF Municipal Landfill Leachate Treatment Plant(Mary Ann Liebert, Inc, 2020) Ukundimana, Zubeda; Kobya, Mehmet; Omwene, Philip Isaac; Gengec, Erhan; Can, Orhan TanerThis study used boron-doped diamond electrode on niobium substrate (Nb/boron-doped diamond [BDD]) for the anodic oxidation of landfill leachate in a batch reactor. Raw leachate and biologically pretreated effluent samples were collected from each step of the existing unit operation of a municipal landfill leachate treatment plant (Kocaeli-Turkey). The influence of parameters, such as treatment time, initial pH (3.50-10.0), and applied current density (j = 76-1,060 A/m(2)), on the removal of total organic carbon (TOC), chemical oxygen demand (COD), and ammonium nitrogen (NH4+-N) was assessed. The highest pollutant removal efficiencies were obtained at leachate inherent pH (6.50-8.75), moreover, pollutant removal rates increased with the increase in current density. The NH4+-N removal mainly occurred by indirect oxidation and well fitted second-order kinetics, whereas COD removal followed pseudo first-order kinetics. The optimum current density ensuring simultaneous removal of COD and NH4+-N was 756 and 455 A/m(2)for raw leachate and for pretreated effluents, respectively. Under these optimums, nearly complete NH4+-N removal was attained, while >= 97% removal of TOC and COD was recorded. Herein, we present anodic oxidation as a suitable alternative for treatment of both stabilized raw leachate and effluents from stages of the membrane bioreactor/ultrafiltration treatment plant for the abatement of COD, TOC, and NH4+-N.Öğe High-performance carbon black electrode for oxygen reduction reaction and oxidation of atrazine by electro-Fenton process(Elsevier, 2021) Karataş, Okan; Gengec, Nevin Atalay; Gengec, Erhan; Khataee, Alireza; Kobya, MehmetThe aim of this study is to produce an electrode that can be used in H2O2 production and Electro-Fenton (EF) process by an effective, cheap, and easy method. For this reason, a superhydrophobic electrode with a higher PTFE ratio and high thickness was produced with a simple press. The produced electrode was used in the production of H2O2 and mineralization of Atrazine. First, the effect of pH, cathode voltage, and operation time on H2O2 production was evaluated. The maximum H2O2 concentration (409 mg/L), the highest current efficiency (99.80%), and the lowest electrical energy consumption (3.16 kWh/kg) were obtained at 0.8 V, 7.0 of pH, and 120 min, and the stability of the electrode was evaluated up to 720 min. Then, the effects of the operational conditions (pH, cathode voltage, operating time, and catalyst concentration) in electro-Fenton were evaluated. The fastest degradation of Atrazine (>99%) was obtained at 2.0 V, 3.0 of pH, and 0.3 mM of Fe2+ in 15 min. In the final part of the study, the degradation intermediates were identified, and the characterization of the electrode was evaluated by SEM, XRD, FT-IR, tensiometer, potentiostat, and elemental analyzer.Öğe TOC and COD removal from instant coffee and coffee products production wastewater by chemical coagulation assisted electrooxidation(Elsevier Science Bv, 2019) Can, Orhan Taner; Gengec, Erhan; Kobya, MehmetThis paper describes and discusses an investigation into the treatment performance of Boron-Doped Diamond (BDD), N coated Ti (N) and various Mixed Metal Oxide (MMO) anodes after pre-treatment chemical coagulation for total organic carbon (TOC) and chemical oxygen demand (COD) removal from instant coffee and coffee products production wastewater. Firstly, the performance of coagulants, AlCl3,Al-2(SO4)(3), FeCl3 and FeSO4 were investigated. Secondly, the treatment performance of BDD, N and various MMO anodes, the influence of the applied current density and the effect of flow rate for the best-performed electrode were investigated. Also, specific energy consumptions and anode performances were calculated and evaluated for electrooxidation process. At the pre-treatment, among the four coagulants, AlCl3 showed the best performance removing 29% TOC and COD 55%. At the electrooxidation process, BDD electrode achieved the best performance. At the end of the 6 h run period, BDD electrode achieved 95% TOC and 97% COD removal. On the other hand, N and MMO electrodes just removed 13-22% TOC and 25-50% COD respectively. In this study, the BDD electrode performed much better than N and MMO electrodes.