Yazar "Er, Maide Feyza" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe ENHANCING MULTI-CLASS TEXT CLASSIFICATION WITH APRIORI-BASED FEATURE SELECTION(Bilal GÜMÜŞ, 2024) Er, Maide Feyza; Bilgin, Turgay TugayIn the field of Natural Language Processing, selecting the right features is crucial for reducing unnecessary model complexity, speeding up training, and improving the ability to generalize. However, the multi-class text classification problem makes it challenging for models to generalize well, which complicates feature selection. This paper investigates how feature selection impacts model performance for multi-class text classification, using a dataset of projects completed by TÜBİTAK TEYDEB between 2009 and 2022. The study employs LSTM, a deep learning method, to classify the projects into nine different industries based on various attributes. The paper proposes a new feature selection approach based on the Apriori algorithm, which reduces the number of attribute combinations considered and makes model training more efficient. Model performance is evaluated using metrics like accuracy, loss, validation scores, and test scores. The key findings are that feature selection significantly affects model performance, and different feature sets have varying impacts on performance.Öğe PERFORMANCE COMPARISON OF SUPERVISED MACHINE LEARNING METHODS IN CLASSIFYING CELESTIAL OBJECTS(2024) Er, Maide Feyza; Bilgin, Turgay TugayIn recent times, astronomy has entered a new era with rapidly growing data sources and advanced observation techniques. The construction of powerful telescopes has enabled the collection of spectral data from millions of celestial objects. However, the increasing number and variety of data have made it challenging to categorize these celestial objects. This study employs machine learning methods to address the fundamental problem of classifying stars, galaxies, and quasars in astronomy. The dataset underwent detailed preprocessing to identify effective features for classification. KNIME Analytics Platform was used for data analysis and visualization, facilitating rapid and efficient data analysis through its drag-and-drop interface. Among the machine learning methods used in our study—Decision Trees, Random Forest, and Naive Bayes—the highest accuracy rate of 97.86% was achieved with the Random Forest model. Notably, despite its lower overall performance compared to other models, the Naive Bayes classifier exhibited superior performance in distinguishing the STAR class, which is one of the study's interesting findings. Future studies aim to enhance model accuracy by using larger and more diverse datasets and exploring different machine learning algorithms. Additionally, the impact of deep learning methods on classification performance will be investigated.












