Yazar "Civalek, Omer" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Post-buckling analysis of aorta artery under axial compression loads(Techno-Press, 2020) Akbaş, Şeref Doğuşcan; Mercan, Kadir; Civalek, OmerBuckling and post-buckling cases are often occurred in aorta artery because it affected by higher pressure. Also, its stability has a vital importance to humans and animals. The loss of stability in arteries may lead to arterial tortuosity and kinking. In this paper, post-buckling analysis of aorta artery is investigated under axial compression loads on the basis of Euler-Bernoulli beam theory by using finite element method. It is known that post-buckling problems are geometrically nonlinear problems. In the geometrically nonlinear model, the Von Karman nonlinear kinematic relationship is employed. Two types of support conditions for the aorta artery are considered. The considered non-linear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The aorta artery is modeled as a cylindrical tube with different average diameters. In the numerical results, the effects of the geometry parameters of aorta artery on the post-buckling case are investigated in detail. Nonlinear deflections and critical buckling loads are obtained and discussed on the post-buckling case.Öğe Vibration analysis of carbon nanotube-reinforced composite microbeams(Wiley, 2021) Civalek, Omer; Dastjerdi, Shahriar; Akbaş, Şeref Doğuşcan; Akgoz, BekirIn the present article, free vibration behavior of carbon nanotube-reinforced composite (CNTRC) microbeams is investigated. Carbon nanotubes (CNTs) are distributed in a polymeric matrix with four different patterns of the reinforcement. The material properties of the CNTRC microbeams are predicted by using the rule of mixture. The microstructure-dependent governing differential equations are derived by applying Hamilton's principle on the basis of couple stress theory and several beam theories. The obtained vibration equation is solved by using Navier's solution method. The effects of length scale parameter, length/thickness ratio, volume fraction and the reinforcement pattern of CNTs on frequencies are examined. It is observed that the biggest frequencies occur in X-Beam while O-Beam has the lowest ones. It is also found that the size effect is more prominent when the thickness of the beam is close to the length scale parameter and this effect nearly disappears as the thickness of the beam increases.