Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Cangul, I.N." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Bounds for matching number of fundamental realizations according to new graph invariant omega
    (Jangjeon Research Institute for Mathematical Sciences and Physics, 2020) Öz, Mert Sinan; Cangul, I.N.
    Matching number of a graph is one of the intensively studied areas in graph theory due to numerous applications of the matching and related notions. Recently, Delen and Cangul defined a new graph invariant denoted by ? which helps to determine several graph theoretical and combinatorial properties of the realizations of a given degree sequence. In this paper, using K2 deletion process, the maximum and minimum matching numbers of all so-called fundamental realizations of a given degree sequence. © 2020 Jangjeon Research Institute for Mathematical Sciences and Physics. All rights reserved.
  • Küçük Resim Yok
    Öğe
    Matching number in relation with maximal-minimal nullity conditions and cyclomatic number by coefficient relations
    (Jangjeon Mathematical Society, 2019) Öz, Mert Sinan; Cangul, I.N.
    Let G be a simple graph. So called K2 deletion process was recently introduced by Wang. A subgraph G' of G that is obtained as a result of some K i deletion process will be called as a crucial subgroup. Let f (G) and v(G') be the matching numbers of G and G', respectively. In this study, we study the relation between i/(G), v{G') and the coefficients of the characteristic polynomials of G and G'. Several results are obtained on these notions. Moreover, conservation of maximal and minimal nullity conditions after applying Ki deletion process are studied. As a result of this, when G satisfies the maximal or minimal nullity condition, we obtain the conditions for the equality c(G) = c(G') where c(G) and c(G') denote the cyclomatic numbers of G and G', respectively. Finally, for some graphs, we state u{G) in terms of c(G), c(G'), n(G), n(G') and the coefficients of the characteristic polynomials of G and G' where n(G), n(G') are the numbers of vertices of G and G', respectively. © 2019 Jangjeon Mathematical Society. All rights reserved.

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder