Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Bilgin, Metin" seçeneğine göre listele

Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Danışmanlı ve yarı danışmanlı öğrenme kullanarak doküman vektörleri tabanlı tweetlerin duygu analizi
    (Balıkesir Üniversitesi, 2019) Bilgin, Metin; Şentürk, İzzet Fatih
    İnternetin günlük hayatımızdaki artan kullanımı ile beraber sosyal medya organlarının gelişimi de paralellik göstermektedir. Mikroblog adı verilen facebook ve twitter benzeri uygulamaları ile anlık duyguları ve düşünceleri ifade etmek son derece yaygın bir hale gelmiştir. Mikroblog sitelerinin en yaygın kullanıma sahip olanlarından birisi de Twitter uygulamasıdır. Twitter üzerinden paylaşılan mesajlar bir ürün ya da hizmet hakkında olabileceği gibi bir kişiyle ilgili bir yorumda olabilmektedir. Yapılan yorumun belirtmek istediği anlamı ve duyguyu belirleyebilmek son dönemdeki gözde konulardan biridir. Bir ürün ya da hizmet hakkında yapılan binlerce yorumun tek tek okunup anlamlandırılması ve yorumlayanların fikirlerinin sınıflandırılması geleneksel yöntemlerde oldukça zaman ve emek alan bir alandır. Gerek makine öğrenmesi ve derin öğrenme algoritmalarındaki gelişmeler gerekse de bunları işleyip yorumlayacak bilgisayar sistemlerinin gelişimine parallel olarak milyonlarca veri üzerinde duygu sınıflandırılması mümkün hale gelmiştir. Gerçekleştirdiğimiz çalışmada Türkçe ve İngilizce tivitler üzerinde duygusal sınıflandırma çalışması gerçekleştirilmiştir. Döküman vektörleri (Doc2Vec) kullanılarak yapılan çalışmada hem DBoW ve DM gibi iki farklı döküman vektörü yönteminin çalışması hemde Yarı Danışmanlı ve Danışmanlı öğrenmenin etkileri araştırılmıştır. Çalışma sonuçları doğruluk, kesinlik, anma, özgünlük ve F-ölçütü metrikleri ile raporlanmıştır. Gerçekleştirilen çalışma sonucunda Yarı Danışmanlı öğrenme yöntemi hem Türkçe hemde İngilizce veri kümesinde Danışmanlı öğrenmeye göre daha başarılı sonuçlar elde etmiştir.
  • Küçük Resim Yok
    Öğe
    Estimation of the Dominant Process Parameters on Coating Thickness in a Continuous Galvanizing Line With Computational Fluid Dynamics and Machine Learning Approaches
    (Wiley, 2025) Simsir, Cansu; Bilgin, Metin; Turan, Osman
    In this study, the dominant process parameters in the air-jet continuous galvanizing line on coating thickness were estimated by computational fluid dynamics and machine learning approaches. First, 128 different cases consisting of different levels of process parameters were created with the Taguchi method. Then, numerical analyses were performed for each case, calculating the maximum pressure gradient and maximum shear stress values on the strip, which were then used in the analytical model developed based on one-dimensional lubrication theory to obtain coating thickness values. Lastly, artificial intelligence techniques based on different machine learning algorithms such as K-Nearest Neighbors, linear regression, random forest and Adaboost, the relative effects of the process parameters influencing the coating thickness were compared through the feature importance values. It was observed that the dominant process parameters differ in low and high jet pressure cases. Accordingly, in the case of low jet pressure, air jet pressure, nozzle slot opening and velocity of the steel strip stand out as the dominant parameters, while in the case of high jet pressure, the most effective parameters influencing the coating thickness are air jet pressure and nozzle slot opening. In addition to this, the effect of the distance between the nozzle and the zinc pot influencing the coating thickness can also be neglected in both low and high pressure cases. Moreover, it was also noticed that the effects of nozzle angle and the distance between the nozzle and the steel strip influencing the coating thickness increase with increasing jet pressure.
  • Küçük Resim Yok
    Öğe
    Feature weighting concatenated multi-head self-attention for amputee EMG classification
    (Elsevier Sci Ltd, 2025) Bilgin, Metin; Mert, Ahmet
    ReliefF and neighborhood component analysis (NCA) concatenated multi-head self-attention (MSA) based multi-channel amputee EMG signals classification model is proposed in this paper. It is inspired by the Transformer and Vision Transformer models, and designed to be lightweight for prosthetic applications. The ReliefF and NCA layers are integrated to the MSA for class separability concatenation of 8-channel EMG signals. The contribution as weight concatenation is performed on publicly available amputee dataset, and the effects of ReliefF and NCA are compared to the conventional MSA architecture against varying contraction levels. Six hand gestures with three contraction levels are recognized using the popular features of waveform length (WL) and root mean square (RMS) depending on three evaluation schemes (within the same force level, unseen level and all levels). The proposed class separability concatenation yields up to 2.08% increase rates when compared to the conventional MSA model.
  • Küçük Resim Yok
    Öğe
    Gated transformer network based EEG emotion recognition
    (Springer London Ltd, 2024) Bilgin, Metin; Mert, Ahmet
    Multi-channel Electroencephalogram (EEG) based emotion recognition is focused on several analysis of frequency bands of the acquired signals. In this paper, spectral properties appeared on five EEG bands (delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}, theta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}, alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}, beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}, gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}) and gated transformer network (GTN) based emotion recognition using EEG signal are proposed. Spectral energies and differential entropies of 62-channel signals are converted to 3D (sequence-channel-trial) form to feed the GTN. The GTN with enhanced gated two tower based transformer architecture is fed by 3D sequences extracted from SEED and SEED-IV emotional datasets. 15 participants' states in session 1-3 are evaluated using the proposed GTN based sequence classification, and the results are repeated by 3x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\small \times $$\end{document} shuffling. Totally, 135 times training and testing are performed on each dataset, and the results are presented. The proposed GTN model achieves mean accuracy rates of 98.82% on the SEED dataset and 96.77% on the SEED-IV dataset for three and four emotional state recognition tasks, respectively. The proposed emotion recognition model can be employed as a promising approach for EEG emotion recognition.
  • Küçük Resim Yok
    Öğe
    Sentiment Analysis on Twitter data with Semi-Supervised Doc2Vec
    (Ieee, 2017) Bilgin, Metin; Şentürk, İzzet Fatih
    Twitter is one of the most popular microblog sites developed in recent years. Feelings are analysed on the messages shared on Twitter so that users ideas on the products and companies can be determined. Sentiment analysis helps companies to improve their products and services based on the feedback obtained from the users through Twitter. In this study, it was aimed to perform sentiment analysis on Turkish and English Twitter messages using Doc2Vec. The Doc2Vec algorithm was run on Positive, Negative and Neutral tagged data using the Semi-Supervised learning method and the results were recorded.
  • Küçük Resim Yok
    Öğe
    Sentiment Analysis with Term Weighting and Word Vectors
    (Zarka Private Univ, 2019) Bilgin, Metin; Köktaş, Haldun
    It is the sentiment analysis with which it is fried to predict the sentiment being told in the texts in an area where Natural Language Processing (NLP) studies are being frequently used in recent years. In this study sentiment extraction has been made from Turkish texts and performances of methods that are used in text representation have been compared. In the study being conducted, besides Bag of Words (BoW) method which is traditionally used for the representation of texts, Word2Vec, which is word vector algorithm being developed in recent years and Doc2Vec, being document vector algorithm, have been used. For the study 5 different Machine Learning (ML) algorithms have been used to classify the texts being represented in 5 different ways on 3000 pieces of labeled tweets belonging to a telecom company. As a conclusion it was seen that Word2Vec, being among text representation methods and Random Forest, being among ML algorithms were most successful and most applicable ones. It is important as it is the first study with which BoW and word vectors have been compared for sentiment analysis in Turkish texts.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Türkçe için ardışık şartlı rastgele alanlarla bağlılık ayrıştırma
    (2017) Bilgin, Metin; Amasyalı, Mehmet Fatih
    Sekans etiketleme bir giriş dizisine karşılık bir çıkış dizisinin üretimidir. Giriş ve çıkış dizisinin içeriklerinegöre doğal dil işlemenin birçok konusu (varlık isim tanıma, makine çevirisi, morfolojik analiz, cümleleri öğelerine ayırma vb.) sekans etiketleme olarak tanımlanabilir. Bağlılık ayrıştırması, bir cümle içerisindekisözcükler arasındaki ilişkilerin ve ilişki türlerinin belirlenmesidir ve bir cümlenin anlamsal analizininyapılabilmesi için şarttır. Bağlılık ayrıştırması sekans etiketleme problemi olarak tanımlandığında iki çıkışdizisinin (ilişki türü, ilişkili kelime) birden üretilmesi gerekmektedir. Bizim önerimiz, özellikle Sekansetiketleme problemlerinin çözümünde sıklıkla kullanılan Şartlı Rastgele Alanların bağlılık ayrıştırmasıproblemi içinde kullanılabilir olduğudur. Ancak Şartlı Rastgele Alanlar tek çıkış üreten bir yöntemdir. Buzorluğu aşabilmek için iki çıkışlı (Bağlılık Türü ve Bağlanılan Kelime) bir problem olan Bağlılık Ayrıştırması iki parçaya bölünerek çözülmüştür. Ardından elde edilen sonuçlar birleştirilerek sistemin çıktısıolarak verilmiştir. Gerçekleştirilen bu çalışma ile Türkçe için en yüksek bağlılık ayrıştırması sonuçlarınaulaşılmıştır.

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder