Yazar "Baki, Osman Tugrul" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Biochemical oxygen demand prediction in wastewater treatment plant by using different regression analysis models(Desalination Publ, 2019) Baki, Osman Tugrul; Aras, Egemen; Akdemir, Ummukulsum Ozel; Yilmaz, BanuThe management and operation of the wastewater treatment plants (WWTP) have an important role in the controlling and monitoring of the plants' operations. Various performance data are taken into account in the controlling of the WWTP. The irregularities between operating parameters often lead to management problems that cannot be overcome. The aim of this study is to provide a simple and reliable prediction model to estimate the biochemical oxygen demand (BOD) with specific water quality parameters like wastewater temperature, pH, chemical oxygen demand, suspended sediment, total nitrogen, total phosphorus, electrical conductivity, and input discharge. The data records in this study were measured between June 2015 and May 2016 and obtained from the laboratory of Antalya Hurma WWTP. In the creation of the model, classical regression analysis, multivariate adaptive regression splines (MARS), artificial bee colony, and teaching-learning based optimization were used. The root mean square error and the mean absolute error were used to evaluate performance criteria for each model. When the results of the analyses were compared with each other, it was observed that the MARS method gave better estimation results than the other methods used in the study. As a result, it was evinced that the MARS method produces acceptable results in the BOD estimation.Öğe Estimation of BOD in wastewater treatment plant by using different ANN algorithms(Techno-Press, 2018) Baki, Osman Tugrul; Aras, EgemenThe measurement and monitoring of the biochemical oxygen demand (BOD) play an important role in the planning and operation of wastewater treatment plants. The most basic method for determining biochemical oxygen demand is direct measurement. However, this method is both expensive and takes a long time. A five-day period is required to determine the biochemical oxygen demand. This study has been carried out in a wastewater treatment plant in Turkey (Hurma WWTP) in order to estimate the biochemical oxygen demand a shorter time and with a lower cost. Estimation was performed using artificial neural network (ANN) method. There are three different methods in the training of artificial neural networks, respectively, multi-layered (ML-ANN), teaching learning based algorithm (TLBO-ANN) and artificial bee colony algorithm (ABC-ANN). The input flow (Q), wastewater temperature (t), pH, chemical oxygen demand (COD), suspended sediment (SS), total phosphorus (tP), total nitrogen (tN), and electrical conductivity of wastewater (EC) are used as the input parameters to estimate the BOD. The root mean squared error (RMSE) and the mean absolute error (MAE) values were used in evaluating performance criteria for each model. As a result of the general evaluation, the ML-ANN method provided the best estimation results both training and test series with 0.8924 and 0.8442 determination coefficient, respectively.Öğe Spatial Forecasting of Dissolved Oxygen Concentration in the Eastern Black Sea Basin, Turkey(Mdpi, 2020) Nacar, Sinan; Bayram, Adem; Baki, Osman Tugrul; Kankal, Murat; Aras, EgemenThe aim of this study was to model, as well as monitor and assess the surface water quality in the Eastern Black Sea (EBS) Basin stream, Turkey. The water-quality indicators monitored monthly for the seven streams were water temperature (WT), pH, total dissolved solids (TDS), and electrical conductivity (EC), as well as luminescent dissolved oxygen (LDO) concentration and saturation. Based on an 18-month data monitoring, the surface water quality variation was spatially and temporally evaluated with reference to the Turkish Surface Water Quality Regulation. First, the teaching learning based optimization (TLBO) algorithm and conventional regression analysis (CRA) were applied to three different regression forms, i.e., exponential, power, and linear functions, to predict LDO concentrations. Then, the multivariate adaptive regression splines (MARS) method was employed and three performance measures, namely, mean absolute error (MAE), root means square error (RMSE), and Nash Sutcliffe coefficient of efficiency (NSCE) were used to evaluate the performances of the MARS, TLBO, and CRA methods. The monitoring results revealed that all streams showed the same trend in that lower WT values in the winter months resulted in higher LDO concentrations, while higher WT values in summer led to lower LDO concentrations. Similarly, autumn, which presented the higher TDS concentrations brought about higher EC values, while spring, which presented the lower TDS concentrations gave rise to lower EC values. It was concluded that the water quality of the streams in the EBS basin was high-quality water in terms of the parameters monitored in situ, of which the LDO concentration varied from 9.13 to 10.12 mg/L in summer and from 12.31 to 13.26 mg/L in winter. When the prediction accuracies of the three models were compared, it was seen that the MARS method provided more successful results than the other methods. The results of the TLBO and the CRA methods were very close to each other. The RMSE, MAE, and NSCE values were 0.2599 mg/L, 0.2125 mg/L, and 0.9645, respectively, for the best MARS model, while these values were 0.4167 mg/L, 0.3068 mg/L, and 0.9086, respectively, for the best TLBO and CRA models. In general, the LDO concentration could be successfully predicted using the MARS method with various input combinations of WT, EC, and pH variables.