Yazar "Atesci, Tolga" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A Real-Time Improved ML Method for PQD Classification of a PV-Powered EV Charging Station(Ieee-Inst Electrical Electronics Engineers Inc, 2025) Yilmaz, Alper; Atesci, Tolga; Meral, Hasan; Bayrak, GokayThe installation of electric vehicle charging stations (EVCSs) that are powered by renewable energy sources has been growing rapidly. However, this has raised a crucial issue regarding the quality of power supplied to these stations. Due to the intermittent nature of renewable energy sources and the high-power requirements of EV charging, power quality disturbances (PQDs) occur more. This study proposes a new intelligent PQD classification method that considers feature extraction/selection based on pyramidal undecimated wavelet transform (p-UWT) and minimum redundancy maximum relevance (mRMR). The feature vector, derived through the application of mRMR, comprises a mere ten elements. The p-UWT-mRMR combination overcomes the problem of noise sensitivity inWTs. In addition, Bayesian optimization and UWT-mRMR have addressed hyperparameter selection difficulties and overfitting in support vector machine models. The proposed method demonstrated an impressive classification accuracy of 99.55% when faced with 30-dB noise. A prototype test platform is developed with EVCS-integrated PV systems in the laboratory to verify the performance of the proposed method in real-time cases. Dynamic analysis revealed that all PQDs have runtimes ranging from 5 to 10ms in experiments. The proposed method has been validated on a dataset of over 20 000 real-world signals with a test accuracy of 99.11%.












