Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • DSpace İçeriği
  • Analiz
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Atesci, Tolga" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    A Real-Time Improved ML Method for PQD Classification of a PV-Powered EV Charging Station
    (Ieee-Inst Electrical Electronics Engineers Inc, 2025) Yilmaz, Alper; Atesci, Tolga; Meral, Hasan; Bayrak, Gokay
    The installation of electric vehicle charging stations (EVCSs) that are powered by renewable energy sources has been growing rapidly. However, this has raised a crucial issue regarding the quality of power supplied to these stations. Due to the intermittent nature of renewable energy sources and the high-power requirements of EV charging, power quality disturbances (PQDs) occur more. This study proposes a new intelligent PQD classification method that considers feature extraction/selection based on pyramidal undecimated wavelet transform (p-UWT) and minimum redundancy maximum relevance (mRMR). The feature vector, derived through the application of mRMR, comprises a mere ten elements. The p-UWT-mRMR combination overcomes the problem of noise sensitivity inWTs. In addition, Bayesian optimization and UWT-mRMR have addressed hyperparameter selection difficulties and overfitting in support vector machine models. The proposed method demonstrated an impressive classification accuracy of 99.55% when faced with 30-dB noise. A prototype test platform is developed with EVCS-integrated PV systems in the laboratory to verify the performance of the proposed method in real-time cases. Dynamic analysis revealed that all PQDs have runtimes ranging from 5 to 10ms in experiments. The proposed method has been validated on a dataset of over 20 000 real-world signals with a test accuracy of 99.11%.

| Bursa Teknik Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Mimar Sinan Mahallesi Mimar, Sinan Bulvarı, Eflak Caddesi, No: 177, 16310, Yıldırım, Bursa, Türkiye
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2026 LYRASIS

  • Çerez ayarları
  • Gizlilik politikası
  • Son Kullanıcı Sözleşmesi
  • Geri bildirim Gönder