Balim, Mustafa AlperAcir, Nurettin2026-02-122026-02-1220199781728119045https://doi.org/10.1109/SIU.2019.8806474https://hdl.handle.net/20.500.12885/654727th Signal Processing and Communications Applications Conference, SIU 2019 -- 2019-04-24 through 2019-04-26 -- Sivas -- 151073Electroencephalography (EEG) signals have been using for clinical purposes for many years. However, studies on the use of EEG signals in brain computer interface (BBA) applications are increasing. It is possible to control machines using only mental activities, especially for patients with limited mobility. Motor imagery signals (MIS) which are formed as a result of the imagination of moving a limb are one of the most common signal used for this purpose. In this study, it is aimed to classify MIS signals with Convolutional Neural Network by using BCI-IV 2b dataset. As a result, higher (%75,7) performance was obtained with lower number of parameters compared to similar previous studies. © 2019 IEEE.trBrain computer interfaceDeep learningElectroencephalographyMotor imageryClassification of motor imagery signals by convolutional neural network for BCI applicationsBBA Uygulamalari için Hayali Motor Işaretlerinin Evrişimsel Sinir Ağlari ile SiniflandirilmasiConference Object10.1109/SIU.2019.88064742-s2.0-85071966257N/A