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Abstract: In recent years, hyperspectral imaging has been a popular subject in the remote sensing 

community by providing a rich amount of information for each pixel about fields. In general, 

dimensionality reduction techniques are utilized before classification in statistical pattern-classification to 

handle high-dimensional and highly correlated feature spaces. However, traditional classifiers and 

dimensionality reduction methods are difficult tasks in the spectral domain and cannot extract 

discriminative features. Recently, deep convolutional neural networks are proposed to classify 

hyperspectral images directly in the spectral domain. In this paper, we present comparative study among 

traditional data reduction techniques and convolutional neural network. The obtained results on 

hyperspectral image data sets show that our proposed CNN architecture improves the accuracy rates for 

classification performance, when compared to traditional methods by increasing the classification 

accuracy rate by 3% and 6%.  

 

Keywords: Hyperspectral Imaging, Deep Learning, Dimensionality Reduction, Classification, 

Convolutional Neural Networks,  

 

Hiperspektral Verilerin Sınıflandırmasında Derin Öğrenme ve Boyut İndirgeme Tekniklerinin 

Karşılaştırılması 

 

Öz: Son yıllarda, hiperspektral görüntüleme yüzey pikselleri ile ilgili zengin miktarda bilgi sağlamasıyla 

uzaktan algılama alanında popüler bir konu olmuştur. Genel olarak, elde edilen yüksek boyutlu ve 

ilişkisel veriyi işlemek için, sınıflandırmadan önce boyut indirgeme teknikleri uygulanmaktadır. Bununla 

birlikte geleneksel sınıflandırıcılar ve boyut azaltma yöntemleri, spektral alanda hala zorlu bir işlemdir ve 

ayırt edici öznitelikler çıkarmaz. Son zamanlarda ise derin konvolüsyonel sinir ağları, hiperspektral 

görüntüleri doğrudan spektral alanda sınıflandırmak için geliştirilmiştir. Önerilen çalışmada, geleneksel 

sınıflandırma ve konvolüsyonel sinir ağları arasında karşılaştırmalı bir çalışma ve analiz yapılmıştır. 

Çeşitli hiperspektral görüntü verilerine dayanarak elde edilen sonuçlar, önerilen konvolüsyonel sinir 

ağının, geleneksel yöntemlerden %3 ve %6 oranında daha iyi bir sınıflandırma oranı sağladığını 

göstermiştir. 

 

Anahtar Kelimeler: Hiperspektral Görüntüleme, Derin Öğrenme, Boyut Azaltma, Sınıflandırma, 

Konvolüsyonel Sinir Ağları 

 
1. INTRODUCTION 
 

Hyperspectral remote sense imaging technology, HSI, is widely used for monitoring Earth’s 

surface (Chang, 2003, P. F. Hsieh,1998). In contrast to traditional multispectral sensors with 
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low spectral resolution, hyperspectral remote sensing imaging is advanced from the 

developments of hyperspectral sensors and provides better discrimination among ground cover 

classes (Scott, 2015).  The sensors provide a vast amount of spectral and spatial information, 

comprise highly correlated and very narrow spectral bands under a specific spectral frequency. 

The information is exploited in HSI classification such as agriculture, environmental 

management, urban planning, mineral detection and urban mapping (Liang et.al., 2016). 

Hyperspectral image comprises of two-dimensional images at a series of wavelengths. 

Spectral information is provided by the grey information of the same pixel point at each 

wavelength (Wang et.al., 2018). The traditional HSI classification based on pixel-wise approach 

(Landgrebe, 2005) that classifies each pixel by its digital numbers and reflectance values from 

different spectral bands. In particular, the classification introduces good performance due to the 

high spatial and spectral resolution, although some pitfalls can affect classification results 

negatively. For instance, training samples and spectral information (i.e., hundreds of correlated 

spectral bands) collection is complex and causes Hughes phenomenon (Hughes, 1968).  

As a consequence, classification accuracy may be insufficient. The Hughes phenomenon, 

also known as the curse of dimensionality, emerges when the number of features and available 

training samples are unbalanced and causes complete failure of the traditional classifiers (Bazi 

et.al., 2006). On the other hand, the classification process can suffer from high-resolution 

images since the process can increase the intra-class variation or decrease the interclass 

variation in both spectral and spatial domains (Chen et.al., 2011). 

In the literature, various studies have been carried out to overcome the issues. The studies 

are based on the following approaches (Bazi et.al., 2006): 

1) The using of the sample covariance matrix (Hoffbeck et.al.,1996a, Tadjudin et.al., 1999); 

2) The exploitation of the classified samples (Shahshahani, 1994, Jackson, 2001); 

3) Reducing/transforming the original feature space into lower dimensionality with feature 

selection/extraction techniques (Lee et.al., 1993, Jimenez et.al., 1999); 

4) Modeling the class spectral signatures with shape description techniques; and (Hoffbeck 

et.al., 1996b, Tsai et.al., 2002) 

5) Support vector machine (SVM) classifiers (Gualtieri et.al,2000, Huang et.al., 2002, 

Melgani et.al.,2004, Camps-Valls et.al., 2004, Foody et.al., 2004, Camps-Valls et.al, 2006, Pal 

et.al., 2005) 

Regarding classification, the transformation of a hyperspectral image into a meaningful 

domain without losing the relevant object information has become an important research topic, 

recently. Ideally, the reduced image should correspond to a minimum number of variables for 

efficient image modeling. 

Instead of using the full spectral bands, dimensionality reduction techniques are effective 

methods for data processing and for finding the class-specific subspace. However, 

determination of the most effective dimensionality reduction technique is difficult in practice. In 

the early stage, spectral-based methods, including principal component analysis (PCA) 

(Licciardi et.al., 2012), independent component analysis (ICA) (Villa et.al., 2011), linear 

discriminant analysis (Villa et.al., 2011), etc. can be thought as linear transformations to extract 

better features of the input image in the lower dimensions (Bruce et.al., 2002, Jimenez et.al., 

1999). Nonetheless, the linear transformation-based methods are not suitable for neither 

analyzing inherently nonlinear hyperspectral data (Chen et.al., 2016) nor in the existence of 

interference sources such as striping (Chang et.al., 1999).  

In recent years, deep learning based methods also provide promising results to explore the 

higher level and more effective spatial features (Fang et.al., 2014). In the computer vision field, 

deep learning methods are designed as automatic multi-layer feature learning and exploration 

tools by using non-linear activation functions and provide more robust features compared to 

lower level ones (Fang et.al., 2014). 
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In deep learning, convolutional neural networks, CNNs, play a dominant role in the 

implementation on GPUs and have recently outperformed other conventional method (Hinton 

et.al., 2006). However, CNNs have been mostly used for visual-related problems, a relatively 

newer method for hyperspectral image classification. 

A convolutional neural network is used to extract spectral and spatial feature maps by linear 

convolution filters followed by nonlinear activation functions. The classical CNNs were 

proposed by Lecun and has recently become popular in image processing applications including 

object detection (Bruna et.al., 2015), face recognition (Sun et.al., 2014), image denoising (Li, 

2014). 

In recent works, the convolutional neural networks have been used to learn the 

discriminating features to classify hyperspectral images adaptively. For instance, Hu et.al. 

(2015) developed a deep convolutional neural network and compared the experimental results 

for some traditional methods. The experimental results on different hyperspectral datasets 

showed that the proposed neural network architecture which was contained five layers with 

weights achieved better classification performance. Also, Chen et.al. (2016) presented a CNN-

based deep feature extraction method for HSI classification. The proposed method performed on 

three public hyperspectral datasets with some state-of-the-art way and provided competitive 

results. Yu et.al. (2017) introduced an efficient CNN architecture that overcomes some 

limitations such as over-fitting. The designed architecture included different principles such as 

data augmentation, more substantial drop rates and discarding max-pooling layers. The 

experimental results for different hyperspectral datasets showed that the well-designed deep 

learning model CNNs can achieve better classification performance. 

In summary, reduction of the spectral information is a necessary pre-processing step to 

hyperspectral analysis. Although, these methods can be affected by the small number of training 

samples and they usually need a large number of samples. They also suffer from unbalanced 

structure between curse of dimensionality of the data and the limited availability of training 

samples.  

In this work, we develop a 2-D deep CNN model for classifying hyperspectral data after 

building appropriate architecture. The model presents a powerful tool to extract the spatial 

feature representation. We also produce a comparative study with traditional classifiers. 

This paper is organized as follows: In Section 2, a brief introduction to CNN and 

dimensionality reduction is presented. In Section 3, the CNN architecture and training process is 

presented. In Section 4, we experimentally compare the performance of the CNN with the 

classification of lower-dimensional hyperspectral datasets generated by different dimensionality 

reduction techniques. Finally, we summarize our experimental results in Section 5. 

 

2. DEFINITIONS AND RELATED WORK 

 

In this section, some general aspects of CNN and dimensionality reduction in hyperspectral 

image classification are presented. 

2.1. Convolutional Neural Networks 

CNN is a special type of feed-forward neural network that is composed of one or more 

pairs of convolution layers and pooling layers. A CNN architecture can be designed according 

to different tasks such as image classification (Agarwal et.al., 2007), speech recognition (Xu 

et.al., 2015) and text recognition (Tuia et.al., 2014). However, there is relatively less CNN 

technique for HSI classification in the literature. In general, CNN is composed of the 

convolutional layers, pooling layers, and fully connected layers. Convolutional layer extracts 

the previous layer feature maps by using linear convolution filters.  At least one layer of the 

nonlinear activation functions (e.g., rectifier, sigmoid, tanh, etc.) is applied to obtain the output 

feature map. Let 𝑋 ∈ 𝑅𝑁 𝑥 𝑀be a training input image or the layer and 𝑛 𝑥 𝑛 is a square region 
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extracted from the image and w be a weighted filter of kernel size with the size of (𝑚 𝑥 𝑚). The 

output layer is computed as: 

ℎ𝑖𝑗
 𝑙 = 𝑓 ( ∑ ∑ 𝑤𝑎𝑏𝑥(𝑖+𝑘)(𝑗+𝑙)

𝑙−1 +  𝑏𝑖𝑗
𝑙

𝑚−1

𝑙=0

 )

𝑚−1

𝑘=0

 (1) 

 

(Fotiadou et.al., 2014) where b is the bias term and 𝑓(. ) is an activation unit of the neuron. 

Every neuron is presented with a spatial location (𝑖, 𝑗)  concerning the input image in the 

convolutional layer. 

The pooling layer provides a group of the local features from adjacent pixels to correct 

deformations of objects. The input is partitioned into a set of patches and returns the max or 

mean value for each partition. By pooling, down-sampled input maps are created to reduce 

computational complexity for the upper layers. The pooling operation is formulated as:  

 

 

ℎ𝑖𝑗
 𝑙 = 𝑓 (𝛽𝑗

𝑙𝑑𝑜𝑤𝑛 (ℎ𝑖𝑗
 𝑙−1 + 𝑏𝑖𝑗

𝑙  )) 
 

(2) 

 

(Fotiadou et.al., 2014) where 𝑑𝑜𝑤𝑛(. ) is the sub-sampling function that sums over each distinct 

patch in the input feature and β is the multiplicative bias of the output feature maps. 

The last layer is generally a fully-connected layer with a softmax function that generates 

the probability of class membership for each unit. The amount of neurons is equal to the number 

of classes to be categorized in a softmax layer. The last layer can be defined as (Liang et.al., 

2016).  

 

𝑣𝑙𝑗
𝑥𝑦

= 𝑓 (∑ ∑ ∑ 𝑘𝑙𝑗𝑚
(𝑥+ℎ)(𝑦+𝑤)

+  𝑏𝑙𝑗 

𝑊𝑗−1

𝑤=0

 

𝐻𝑗−1

ℎ=0𝑚

) 

 

(3) 

 

where 𝑙 is the layer that is processed, 𝑗 is the number of feature maps in layer  𝑙. 𝑣𝑙𝑗
𝑥𝑦 

is the 

output at position (𝑥, 𝑦) in that feature map and layer. 𝑚 indexes in the (𝑙 − 1)𝑡ℎ layer 

connected to the current (𝑗𝑡ℎ)  feature map and  𝑘𝑙𝑗𝑚
ℎ𝑤   is the value at position (ℎ, 𝑤) of the 

kernel connected to the 𝑗𝑡ℎ feature map. 𝐻𝑗 refer to the height and width of the spatial 

convolution kernel, respectively (Chen et.al., 2016). 

In the proposed network, a hyperspectral image is considered as a 3D tensor of 

dimensions ℎ 𝑥 𝑤 𝑥 𝑐 where ℎ and 𝑤 refers the height and width of the image and 𝑐 is the 

spectral bands (channels).  The images are decomposed into square patches to align with the 

specific nature of CNNs. Each square patch contains spectral and spatial information for a 

specific pixel 𝑝𝑥𝑦 to classification. 𝑙𝑥𝑦 is the class label of the pixel at location (𝑥, 𝑦) and 

𝑤𝑥𝑦  the patch centered at pixel 𝑝𝑥𝑦. In final, the dataset is formed 𝐷 =  {(𝑤𝑥𝑦 , 𝑙𝑥𝑦 )}  for 

𝑋 =  1, 2,· · · , 𝑤 and 𝑦 =  1, 2,· · · , ℎ. Patch 𝑤𝑥𝑦 is also a 3D tensor with dimension 𝑠 ×  𝑠 × 𝑐. 

It contains spectral and spatial information for the pixel located at  (𝑥, 𝑦). Parameter 

𝑐 corresponds to the number of spectral bands (Makantasiset. et. al., 2015). 
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2.2. Dimensionality Reduction Technique 

The hyperspectral images are composed of several hundred images obtained with different 

frequencies. In general, the ability of classification increases with detailed information about the 

land cover. However, some reasons make the classification of pixels challenging such as high 

spectral resolution, insufficient training samples and a large number of bands. The 

computational time is significantly increased because of these reasons.  

Dimensionality reduction transforms the data into a lower dimensional space. It is an 

effective method to eliminate irrelevant variance in the data and extract low-dimensional 

features which include some desired information. Instead of using the all spectral bands, the 

lower-dimensional representation with better specific subspace could effectively improve 

classification performance.  

In the study, we consider Principal component analysis, PCA, linear discriminative 

analysis, LDA, and independent component analysis, ICA, Factor Analysis, FA and Truncated 

Singular Value Decomposition, SVD, has been applied as classical dimensionality reduction 

methods. PCA (Fukunaga, 2013) is the most widely used unsupervised dimensionality reduction 

method and removes the dependencies among the spectral bands by eigenvector decomposition. 

Therefore, it is often used in hyperspectral image processing (Rodarmel et.al., 2002). It 

generates a lower dimensional representation of data that describe as much of the large variance. 

It keeps the most significant singular vectors for the projection of the data to decrease 

dimensionality (Lee et.al., 1993).  In the study, PCA utilizes Singular Value Decomposition, 

SVD. SVD is a method for performing PCA by diagonalization of the covariance matrix and 

principal components of data are calculated more efficient and robust way for transformation 

(Wall et.al., 2003). 

LDA seeks the best projection that maximizes the between-class scatter while minimizing 

the within-class scatter. It optimizes the Fisher score and does not require the tuning of free 

parameters. Due to these reasons, LDA is extensively used in remote sensing and hyperspectral 

imaging for feature reduction (Bandos et.al., 2009).  In the study, another linear dimensionality 

reduction method, Truncated SVD, is applied. This method does not center the data before 

computing the singular value decomposition contrary to PCA (Halko, et.al., 2011).  

FA is a linear statistical method that is developed for potential factors from observed 

variables to replace the original data (Bartholomew et.al., 2008). It is a very useful method for 

high-dimensional data generation model since it allows different regions in the input space to 

build a model of local factor data (Wang et.al., 2015). 

In this study, the effectiveness of CNN based model is tested by comparison of different 

dimensionality reduction and different classification methods with the low-dimensional data. 

 

3. MATERIAL AND METHODS 

 

3.1. Hyperspectral Datasets 
 

For the experimentation, we exploit Indian Pines and Pavia University hyperspectral 

datasets which are prominent and publicly available. 

The Indian Pines dataset is collected by Airborne Visible Infrared Imaging Spectrometer 

(AVIRIS) sensor from a test site in the northeast of Indian Pine state, the USA in 1992. The 

dataset contains 145 𝑥 145 pixels with 20 𝑚 spatial resolution and 224 spectral bands in the 

wavelength range of 0.4–2.5 µ𝑚. 20 water absorption bands are ([104–108], [150–163],220).  
The dataset contains 10.249 labeled samples and a 16-classes ground-truth map (Gamba, 2004). 

The Pavia University dataset (Engineering School at the University of Pavia, Pavia, Italy) is 

obtained by the reflective optics system imaging spectrometer (ROSIS-03) airborne optical 

sensor.  
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The dataset has 610 𝑥 340 pixels with a spatial resolution of 1.3 𝑚 and 103 spectral bands 

in the wavelength range 0.43–0.86 µm. Pavia University dataset has ground truth maps of 

9 classes and 42.776 labeled samples (or pixels) (Huang et.al., 2009).  

 

3.2. Experiment Setup 

 

Different experiments are performed to evaluate the performance of classification and 

convolutional neural network approaches in Python environment (version 3, 64-bit) language 

and Tensorflow library (Abadi, et.al., 2016). The results are generated on a PC equipped with 

Intel(R) Core(TM) i7-7700HQ CPU @ 2.8 GHz Processor and 16.00 GB memory (RAM). 

 

 
Figure 1: 

The Indian Pines hyperspectral data; 

<http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes> 

a. a sample band and b. Ground-truth map of the Indian Pines dataset (sixteen land cover 

classes 

 
Figure 2: 

The Pavia University hyperspectral data; 

<http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes> 

a. a sample band and b. Ground-truth map of the Pavia University dataset (nine 

land cover classes) 

3.3. The Architecture of the Proposed CNN 

We present the architecture of our CNN in Figure 3. In the architecture, there exist 2 

convolutional layers in the network. The convolutional kernel size, pixels of the first 

 

a. b. 

 

a. b. 
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convolutional layer, is 5𝑥5 and the number of maps in this layer is 200. The number of feature 

maps of the second layers is 100 and the size of each feature map is 3𝑥3.  After each 

convolution step, a 2𝑥2 max-pooling is operated on each channel. After these processes, we 

“flatten” the data in the third layer, i.e., stretch it to a 1-D vector, and feed it into two fully 

connected layers with  150 and 50 nodes. The output-layer size is set to be the same as the total 

number of classes. The ReLU non-linearity function is selected as the activation function to the 

output of every convolutional layer. 

 

Figure 3: 

The architecture of proposed CNN for HSI classification  

 

In Table I, we present scheme of the proposed architecture in more detail. First, the 

hyperspectral images are split into 3-D patches. The size of the neighboring regions (patch size) 

in pixels is 5𝑥5𝑥200 for Indian Pines and 5𝑥5𝑥103 for Pavia University. The created data with 

the patches divided into the number of parts (batches) that is the number of instances used in 

one iteration. Then, the batches are reshaped two-dimensional images and sent as input volume 

to the first convolutional layer, Conv1. After applying the RELU function, the generated feature 

maps by the first convolutional layers are sent to the first max pool layer (Pool1) with a 5𝑥5 

kernel. The resulting output volume is sent to the last convolutional layer (Conv2) with a 3𝑥3 

filter size. Again, after applying RELU function, the generated feature maps by Conv2 are sent 

to the second max pool layer (Pool2) with a 2𝑥2 kernel. Since there is no third max pool layer, 

the output volume is reshaped to send it to fully-connected layers. Three fully-connected layers 

are implemented to the networks. The first two fully-connected layers (F1 and F2) compute the 

outputs according to their weights, their biases, the output of the previous layer and the 

activation function RELU. Finally, the last fully connected-layer (F3) computes the outputs of 

the network with a softmax function. 

To minimize the loss function in a network, a backward propagation algorithm can be useful 

in a general way. Mostly, variations of the stochastic gradient descent algorithm (SGD) is 

applied to optimize the parameters (Liang, et.al., 2016) The optimizers require careful 

initialization and adjustment of the model hyper-parameters such as the learning rate used in 

optimization. The learning rate hyper-parameter controls the tuning the weights of out network 

respect the loss gradient. In this work, the Xavier initializer (Glorot et.al., 2010) is used to 

initialize of all weights and bias of the network.  

The Adam optimizer is also implemented for optimizing the parameters k and b, trainable 

parameters (Kingma et.al., 2014).  The Adam optimizer has various advantages such as working 

sparse gradients, naturally performing a form of step size annealing and invariant parameter 

updates to a rescaling of the gradient (Kingma et.al., 2014).  In the study, the cross-entropy is 

used to determine the loss of the CNN and measure the deviation from the target and predicted 

labels. The network is trained by minimizing the cross-entropy loss function by the Adam 

optimizer (Kingma et.al., 2014).   
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Table 1. The Configuration of the 2-D Convolution Neural Network  

Datasets 
Patch 

Size 

Conv

1 

Pool1 

REL

U 

Conv

2 

Pool2 

REL

U 
F1 F2 F3 

Indian Pines 5x5x200 
5x5 

2x2 

 

Yes 

3x3 

2x2 

 

Yes 

Fully 

Connected 

Fully 

Connected 
1x16 

Pavia 

University 
5x5103 

5x5 

2x2 

 

Yes 

3x3 

2x2 

 

Yes 

Fully 

Connected 

Fully 

Connected 
1x9 

Feature Map  200  100   150 50 

 

The parameters can be updated according to the derivatives. k and b are determined by 

applying the backpropagation firstly. Then, new error derivatives are generated with a feed-

forward step. These derivatives could be used for parameter updating for another round. The 

feed-forward and back-propagation steps are repeated until obtaining optimal k and b or a 

predefined number of iterations is reached (Liang et.al., 2016). In our study, the number of 

training iteration set in 2000. 

 

3.4. Application of Different FE Methods and Classifiers 
 

Hyperspectral images are high-dimensional data with a limited number of training samples. 

Since training supervised classifiers are time-consuming and costly in classification, a small part 

of the data is used for training classifiers. In this set of experiments, CNN was compared with 

the effectiveness of different dimensionality reduction techniques performances through 

classification results. 

       In the dimensionality reduction step, we utilized Python’s scikit-learn machine learning 

package (Pedregosa et.al.,2011). For a detailed comparison, we tested various unsupervised and 

supervised dimensionality reduction techniques which have been described in Section 2. The 

number of reduced dimensions is iteratively increased to find an appropriate dimension for each 

technique. 

       After dimensionality reduction is applied and new data is obtained, this data is dividing 10 

groups called folds. In the process, the reduced data divided into k mutually subsets of equal 

size and each subset are used for training while the rest subsets are used for the test. After k 

times of classification, the average accuracy is calculated. Various classifiers in scikit-learn are 

performed to evaluate different dimensionality reduction techniques through classification 

results. 

 

4. EXPERIMENTAL RESULTS AND VALIDATIONS 

 

In the CNN training process, the training samples are divided into 100 batches with the 

equal number of samples, randomly. Approximately 60% of the available samples were used as 

the training dataset, whereas remaining of them served as the test dataset in the experiment. The 

number of train and test samples of each class is presented in Table 2 and Table 3. The total 

number of training and test samples are 6153 and 4096 for Indian Pines, 25670 and 17106 for 
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Pavia University dataset. One batch is sent into the network for each iteration. The training 

process continues until it reaches the maximal number of iterations.  In the test process, the test 

sample is sent into the trained network.  

 

Table 2. The Configuration of the 2-D Convolution Neural Network  

Classes Train Test 

1 28 18 

2 857 571 

3 498 332 

4 143 94 

5 290 193 

6 438 292 

7 17 11 

8 287 191 

9 12 8 

10 584 388 

11 1473 982 

12 356 237 

13 123 82 

14 759 506 

15 232 154 

16 56 37 

 

Table 3. The Indian Pines dataset and per class training sets and corresponding test sets 

Classes Train Test 

1 3979 2652 

2 11190 7459 

3 1260 839 

4 1839 1225 

5 807 538 

6 3018 2011 
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7 798 532 

8 2210 1472 

9 569 378 

 

 

To verify that the proposed CNN is suitable for classifying hyperspectral data sets with 

limited training samples, we compare the CNN with different traditional classification 

techniques. The dimensionality reduction methods are also performed before the classification 

to improve the classification performance. The number of dimensions was found from 2 to 50 

for two hyperspectral data sets, iteratively. Then, k-fold cross-validation is used to the reduced 

data in the current dimension for classification.  The average classification results for all 

dimensionality of the data sets for the classifiers with the dimensionality reduction techniques 

are reported in Table 4 and Table 5. As seen from the tables, the maximum average accuracies 

of 87.23% and 92.47% are obtained with FA by Random Forest classifier for Indian Pines and 

Pavia University data sets. The experimental results also show that the FA algorithm 

outperforms than the other dimensionality reduction methods. FA assumes that variables within 

a particular group are highly correlated among themselves, but they have relatively small 

correlations with variables in a different group. While PCA is widely used in hyperspectral data 

analysis, it is not a useful dimensionality reduction method when the components of maximum 

variation do not coincide with a large intra-class variation. 

 

Table 4. Average classification accuracies of dimensions from 2 to 50 for the Indian Pines 

dataset   

                                         

Classifier 

DR 

Technique 

Random 

Forest 

Decision 

Tree 

Gaussian 

Naive 

Bayes 

Quadratic 

Discriminant 

Analysis 

Logistic 

Regression 

Factor Analysis (FA) 87.23 81.32 87.23 67.78 76.64 

Independent Component 

Analysis (ICA) 
74.03 65.00 74.03 53.56 63.292 

Linear Discriminant Analysis 

(LDA) 
81.62 75.81 81.65 79.51 82.44 

Truncated SVD 
77.17 70.77 77.17 59.29 65.13 

Principal Component Analysis 

(PCA) 
77.47 71.29 77.542 59.44 63.33 

 

The classification results for the CNN is presented in Figure 4 and Figure 5 for the 

datasets. Compared with the conventional classification methods, the proposed CNN achieves 

higher accuracy using all spectral bands even with a small number of training samples. As seen 

in Figure 4 and Figure 5, the best accuracy of 95.24% is obtained with 2000 iterations for Pavia 
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University using CNN.  Moreover, the best accuracy result (93.87%) is obtained for Indian 

Pines with CNN. In Figure 6, we can observe the evaluation of the error regarding training 

iteration. The value of the loss function is decreased with an increasing number of iterations. 

The results demonstrate that the test accuracy is relatively increasing while the cost value is 

reducing for both datasets. Early stopping can be considered for the training process to reduce 

computational cost since the proposed CNN converge in almost 900 iterations. Concerning the 

conventional classification method, the suggested CNN architecture provide averagely 6% 

classification improvements and 3% Indian Pines and Pavia University, respectively. Obviously, 

the proposed CNN increased the classification accuracy significantly under insufficient training 

data. 

 

Table 5. Average classification accuracies of dimensions from 2 to 50 for the Pavia 

University dataset   

                                         

Classifier 

DR 

Technique 

Random 

Forest 

Decision 

Tree 

Gaussian 

Naive 

Bayes 

Quadratic 

Discriminant 

Analysis 

Logistic 

Regression 

Factor Analysis (FA) 92.47 89.97 92.45 83.12 92.39 

Independent Component 

Analysis (ICA) 
89.67 85.93 89.68 84.44 92.08 

Linear Discriminant Analysis 

(LDA) 
90.74 87.32 90.74 86.84 89.20 

Truncated SVD 89.94 86.61 89.92 80.89 92.10 

Principal Component Analysis 

(PCA) 
89.65 86.59 89.65 81.46 92.08 
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Figure 4: 

Classification accuracies of CNN for the Indian Pines dataset 

 
 

 Figure 5: 

Classification accuracies of CNN for the Pavia University dataset 
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Figure 6: 

Cost value versus the training iteration for the hyperspectral data sets 
 

5. CONCLUSION 

 

This study considered data classification problem on hyperspectral imagery, where the size 

of the data set is very large. To reduce the computational burden and improve classification 

accuracy, we utilized dimensionality reduction and deep learning techniques. We evaluated the 

most efficient the dimensionality reduction techniques and the proposed convolutional neural 

network using accuracy performance.  
In hyperspectral imagery, dimensionality reduction without loss of critical information is 

one of the fundamental goals for efficient classification. However, finding the suitable 

dimensionality reduction technique is highly relying on domain knowledge. 
Unlike conventional hyperspectral classification approaches, we propose a 2D CNN 

architecture for efficient classification. In the study, we compared our design to traditional 

dimensionality reduction and classification techniques on two publicly available hyperspectral 

datasets. Experimental results demonstrate that our CNN features can yield superior accurate 

results with using all spectral bands. 
In the proposed CNN architecture, two convolutional and fully connected layers are used 

because of the limited number of training samples. We intend to improve multiple layers of 

CNN frameworks to improve our classification results, in the future works. 
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