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Department of Civil Engineering, Bursa Technical University, Bursa, Turkey

Abstract

This paper presents responses of an edge circular cantilever beam under the effect of an impact force. The beam is excited
by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin–Voigt model for the material of the
beam is used. The cracked beam is modelled as an assembly of two sub-beams connected through a massless elastic
rotational spring. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based
finite element method. The system of equations of motion is derived by using Lagrange’s equations. The obtained system of
linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using
Newmark average acceleration method. In the study, the effects of the location of crack, the depth of the crack, on the
characteristics of the reflected waves are investigated in detail. Also, the positions of the cracks are calculated by using
reflected waves.
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Introduction

Elastic wave propagation through the monitored part is of

considerable interest in many fields. The most striking example of

the engineering applications is detection of damage or/and

material difference in the investigated media. By investigating

the character of waves, the type and position of damage or/and

different material can be determined.

Structural elements are subjected to destructive effects in the

form of initial defects within the material or caused by fatigue or

stress concentration. As a result of destructive effects, cracks occur

in the structural elements. It is known that a crack in structure

elements introduces a local flexibility, becomes more flexible and

its dynamic and static behaviours will be changed. Cracks cause

local flexibility and changes in structural stiffness. Therefore,

understanding the mechanical behavior and the safe performance

of edge-cracked structures are importance in designs.

Beams can be found in many different sizes and shapes in the

engineering applications. Circular beams are the most used and

preferred in the machine elements because of high energy

absorbing capability and high buckling strength. Hence, under-

standing the mechanical behaviour circular beams are very

important.

In the last decades, much more attention has been given to the

elastic wave propagation of beam structures. Teh and Huang [1]

studied an analytical model, based on the elasticity equations, to

investigate wave propagation in generally orthotropic beams. A

finite element technique is developed for studying the flexural

wave propagation in elastic Timoshenko and Bernoulli-Euler

beams by Yokoyama and Kishida [2]. Wave propagation in a split

beam is analyzed by treating each section separately as a

waveguide and imposing appropriate connectivities at their joints

by Farris and Doyle [3]. A direct mathematical approach method

is developed to study the problem of coupled longitudinal and

flexural wave propagation in a periodically supported infinite long

beam by Lee and Yeen [4]. A spectral super-element model was

used in Gopalakrishnan and Doyle [5] to model transverse crack

in isotropic beam and the dynamic stress intensity factor was

obtained accurately under impact type loading. Palacz and

Krawczuk [6] investigated longitudinal wave propagation in a

cracked rod by using the spectral element method. The use of the

wave propagation approach combined with a genetic algorithm

and the gradient technique for damage detection in beam-like

structure is investigated by Krawczuk [7]. Krawczuk et al. [8]

studied a new finite spectral element of a cracked Timoshenko

beam for modal and elastic wave propagation analysis. Usuki and

Maki [9] formulated an equation of motion for a beam according

to higher-order beam theory using Reissner’s principle. They

derived the Laplace transform of the equation and investigated

wave-propagation behavior under transverse impact. A method of

crack detection in beam is provided by wavelet analysis of

transient flexural wave by Tian et al. [10]. Kang et al. [11] applied

the wave approach based on the reflection, transmission and

propagation of waves to obtain the natural frequencies of finite

curved beams. A spectral finite element with embedded transverse

crack is developed and implemented to simulate the diagnostic

wave scattering in composite beams with various forms of

transverse crack by Kumar et al. [12]. The wave propagation

model investigated herein is based on the known fact that material

discontinuities affect the propagation of elastic waves in solids by

Ostachowicz et al. [13]. A spectral finite element model for

analysis of flexural-shear coupled wave propagation in laminated

and delaminated, multilayer composite beams is presented by

Palacz et al. [14,15]. A new spectral element is formulated to
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analyse wave propagation in an anisotropic inhomogeneous beam

by Chakraborty and Gopalakrishnan [16]. Watanabe and

Sugimoto [17] studied flexural wave propagation in a spatially

periodic structure consisting of identical beams of finite length.

Vinod et al. [18] investigated a formulation of an approximate

spectral element for uniform and tapered rotating Euler–Bernoulli

beams. Sridhar et al. [19] investigated the development of an

effective numerical tool in the form of pseudospectral method for

wave propagation analysis in anisotropic and inhomogeneous

structures. An experimental method of detecting damage using the

flexural wave propagation characteristics is proposed by Park [20].

Chouvion et al. [21] studied a systematic wave propagation

approach for the free vibration analysis of networks consisting of

slender, straight and curved beam elements and complete rings.

Frikha et al. [22] investigated physical analysis of the effect of axial

load on the propagation of elastic waves in helical beams.

Kocatürk et al.[23] studied wave propagation of a piecewise

homegenous cantilever beam under impact force. Kocatürk and

Akbas [24] investigated wave propagation of a microbeam with

the modified couple stress theory. In a recent study, wave

propagation and localization in periodic and randomly disordered

periodic piezoelectric axial-bending coupled beams are studied by

Zhu et al. [25]. Akbaş [26] studied the effect of the elastic

foundation types on the wave propagation of the beams.

A better understanding of the mechanism of how the crack

effects change response of wave propagation of a circular beam is

necessary, and is a prerequisite for further exploration and

application of the cracked circular beams.

In this study, wave propagation in a cantilever circular beam

under the effect of an impact force is studied. The considered

problem is investigated within the Bernoulli-Euler beam theory by

using energy based finite element method. The Kelvin–Voigt

model for the material of the beam is used. The cracked beam is

modelled as an assembly of two sub-beams connected through a

massless elastic rotational spring. The system of equations of

motion is derived by using Lagrange’s equations. The obtained

system of linear differential equations is reduced to a linear

algebraic equation system and solved in the time domain by using

Newmark average acceleration method. The effects of the location

of crack, the depth of the crack, on the characteristics of the

reflected waves are investigated in detail. Also, the positions of the

cracks are calculated by using reflected waves.

Theory and Formulations

Consider a beam of length L, diameter D, containing an edge

crack of depth a located at a distance L1 from the left end, as

shown in Fig. 1. One of the supports of the beam is assumed to be

fixed and the other free. The beam is subjected to an impact force

in the transverse direction as seen from Fig. 1. It is assumed that

the crack is perpendicular to beam surface and always remains

open.

Governing equations of intact beam
The beam is modeled within the Euler-Bernoulli beam theory.

According to the coordinate system (X,Y,Z) shown in Fig. 1, based

on Euler-Bernoulli beam theory, the axial and the transverse

displacement field are expressed as

u(X ,Y ,t)~{Y
Lv(X ,t)

LX
ð1Þ

v(X ,Y ,t)~v(X ,t) ð2Þ

w(X ,Y ,t)~0 ð3Þ

Where u,v and w are x,y and z components of the displacement

vector q, respectively, and t indicates time.

Because the transversal surfaces of the beam is free of stress,

then

sZZ~sYY ~0 ð4Þ

The Kelvin–Voigt model for the material is used. The constitutive

relations for the Kelvin–Voigt model between the stresses and

strains become

sXX ~E(eXX zg _eeXX ) ð5Þ

where E indicates the Young’s modulus of the beam, sxx indicates

normal stresses, exx indicates normal strains in the X direction, g
indicates the damping ratios, as follows

g~
c

E
ð6Þ

where c indicates the coefficient of damping of the beam. By using

Eqs. (1) and (2), the strain- displacement relation can be obtained:

exx~
Lu

LX
~{Y

L2 v(X ,t)

LX 2
ð7Þ

The potential energy of the beam is follows

Ui~
1

2

ðL
0

EI(
L2 v(X,t)

LX2
)dX ð8Þ

Where I is the inertia moment of the beam. The kinetic energy of

the beam at any instant t is

T~
1

2

ðL
0

ð
A

r
Lv(X ,t)

Lt

� �2

dAdX ð9Þ

Where r is the mass density of the beam. The potential energy of

the external load can be written as

Ue~{

ðL
x~0

F (X ,t)v(X ,t)dx: ð10ÞFigure 1. A circular beam with an open edge crack subjected to
an impact force.
doi:10.1371/journal.pone.0100496.g001
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The dissipation function of the beam at any instant t is

R~
1

2

ðL
0

gE I
L2 _vv(X , t)

L X 2

 !2

d x ð11Þ

Lagrangian functional of the problem is given as follows:

I~T{(UizUe) ð12Þ

Solution method of the problem
The considered problem is solved by using Lagrange’s equations

and time integration method of Newmark [27]. In order to apply

the Lagrange’s equations, the displacements of nodes of the

unknown functions q (X,t) which is written for a two-node beam

element shown in Fig. 2 are defined as follows

fq(t)g(e)~½v
(e)
i (t) h

(e)
i (t) v

(e)
j (t) h

(e)
j (t)�T ð13Þ

The displacement field of the finite element is expressed in

terms of nodal displacements as follows

v(e)(X ,t)~ 1(X )v
(e)
1 (t)z 2(X )h

(e)
1 (t)z 3(X )v

(e)
2 (t)z 4(X )h

(e)
2 (t)

~½ �

vi

hi

vj

hj

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

~½ �fqg
ð14Þ

where vi and hi are transverse displacements and slopes at the two

end nodes of the beam element, respectively. 1, 2, 3 and 4 are

interpolation functions and given as follows:

1(X )~1{3(X=Le)2z2(X=Le)3

2(X )~Le({(X=Le)z2(X=Le)2{(X=Le)3)

3(X )~3(X=Le)2{2(X=Le)3

4(X )~Le((X=Le)2{(X=Le)3)

ð15Þ

where Le is the length of the beam element.

By substituting Equations (14) into Equations (8), (9) and (11),

energy functions can be rewritten as follows:

Ui~
1

2

ðL
0

½EI(½L
2

LX 2
�fqg)2�dX ð16Þ

T~
1

2

ðL
0

½rA(½L
Lt
�fqg)2�dX ð17Þ

R~
1

2

ðL
0

½gE I(
L2

LX 2
(½L

Lt
�fqg))2�dX ð18Þ

The Lagrange’s equations gives the following equation;

L I

L q
(e)
k

{
d

d t

L I

L _qq(e)
k

zQDk
~0, k~1, 2,3,::: ð19Þ

where

QDk
~{

LR

L _qq(e)
k

, k~1, 2,3,::: ð20Þ

QDk
is the generalized damping load which can be obtained from

the dissipation function by differentiating R with respect to _qq(e)
k .

The Lagrange’s equations yield the system of equations of

motion for the finite element and by use of usual assemblage

procedure the following system of equations of motion for the

whole system can be obtained as follows

½K�fq(t)gz½D�f _qq(t)gz½M�f€qq(t)g~fF(t)g ð21Þ

where

½M�~
ðL

x~0

rAf (X )gTf (X )gdX ð22Þ

½D�~
ðL

x~0

g EIf€(X)gTf€(X)gdX ð23Þ

fF(t)g~
ðL

x~0

f (X)gT
F(X,t)dX ð24Þ

½K�~
ðL

x~0

f€(X)gT
EIf€(X)gT

dX ð25Þ

where, ½K� is the stiffness matrix, ½D� is the damping matrix, ½M� is
mass matrix and fF(t)g is the load vector. The motion equations

which is given by Eq. (21), are solved in the time domain by using

Newmark average acceleration method (Newmark [27]).

Crack modeling
The cracked beam is modeled as an assembly of two sub-beams

connected through a massless elastic rotational spring shown in

Fig. 3.
Figure 2. A two-node beam element.
doi:10.1371/journal.pone.0100496.g002
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The bending stiffness of the cracked section kT is related to the

flexibility G by

kT~
1

G
ð26Þ

Cracked section’s flexibility G can be derived from Broek’s

approximation (Broek [28]):

(1{n2)K2
I

E
~

M2

2

dG

da
ð27Þ

where M is the bending moment at the cracked section, KI is the

stress intensity factor (SIF) under mode I bending load and is a

function of the geometry and the loading properties as well. n
indicates Poisson’s ratio. For circular cross section, the stress

intensity factor for KI a single edge cracked beam specimen under

pure bending M can be written as follow (Tada et al. [29])

KI~
4M

pR4

h’z
2

ffiffiffiffiffiffi
pa
p

F (a=h’z) ð28Þ

Where

F(a=h’z)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h’z
p a

tg(
p a

2h’z
)

s
0:923z0:199(1{sin(

p a

2h’z
))4

cos(
p a

2h’z
)

ð29Þ

Where a is crack of depth and h’z is the height of the strip, is shown

Fig. 4, and written as

h’z~2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2{z2

p
ð30Þ

where R is the radius of the cross section of the beam.

After substituting Eq. (28) into Eq. (27) and by integrating Eq.

(27), the flexibility coefficient of the crack section G is obtained as

G~
32 (1{u2)

E pR8

ðb
{b

ðaZ

0

y(R2{z2)F2(a=h’z)dy dz ð31Þ

where b and aZ are the boundary of the strip and the local crack

depth respectively, are shown in Fig. 4, respectively, and written as

b~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2{(R{a)2

q
ð32Þ

az~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2{z2

p
{(R{a) ð33Þ

The spring connects the adjacent left and right elements and

couples the slopes of the two beam elements at the crack location.

In the massless spring model, the compatibility conditions enforce

the continuities of the axial displacement, transverse deflection,

axial force and bending moment across the crack at the cracked

section (X~L1), that is,

v1~v2, M1~M2 ð34Þ

The discontinuity in the slope is as follows:

kT(
dv1

dX
{

dv2

dX
)~kT(h1{h2)~M1 ð35Þ

Based on the massless spring model, the stiffness matrix of the

cracked section as follows:

½K�(Cr)~
1=G {1=G

{1=G 1=G

� �
~

kT {kT

{kT kT

� �
ð36Þ

The stiffness matrix of the cracked section is written according to

the displacement vector:

fqg(Cr)~fh1,h2gT ð37Þ

Where h1 and h2 are the angles of the cracked section. With

adding crack model, the equations of motion for the finite element

and by use of usual assemblage procedure the following system of

equations of motion for the whole system can be obtained as

follows:

(½K�z½K�(Cr))fq(t)gz½D�f _qq(t)gz½M�f€qq(t)g~fF(t)g ð38Þ

Numerical Results

In the numerical examples, the effects of the location of crack,

the depth of the crack, on the characteristics of the reflected waves

are presented. In the numerical study, the physical properties of

the beam are Young’s modulus E = 70 GPa, Poisson’s ratio n = 0,3,

mass density r = 2700 kg/m3 and the damping ratio

g~0,0000001. The geometrical properties of the pile are length

L = 3 m and the diameter D = 2 cm. The problem is analyzed

within the framework of the Bernoulli–Euler beam theory.

Numerical calculations in the time domain are made by using

Newmark average acceleration method. The system of linear

differential equations which are given by Equation (20), is reduced

Figure 3. Rotational spring model.
doi:10.1371/journal.pone.0100496.g003

Figure 4. The geometry of the cracked circular cross section.
doi:10.1371/journal.pone.0100496.g004
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Figure 6. The relationship between first non-dimensional natural frequency and the crack depth ratio for different crack locations.
a) L1/L = 0.2, b) L1/L = 0.4.
doi:10.1371/journal.pone.0100496.g006

Figure 7. Transverse displacement at the free end of the beam. a) Intact beam, b) L1/L = 0.1, c) L1/L = 0.3 and d) L1/L = 0.5.
doi:10.1371/journal.pone.0100496.g007

Figure 5. The shape of the excitation impulse in the a) time domain and b) frequency domain [13].
doi:10.1371/journal.pone.0100496.g005
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to a linear algebraic system of equations by using average

acceleration method. In the numerical calculations, the number

of finite elements is taken as n = 100. The beam is excited by a

transverse triangular force impulse (with a peak value 1 N)

modulated by a harmonic function (Fig. 5) (Ostachowicz et al.,

[13]). In this study, higher frequency excitation impulse is used for

detection of the cracks. The frequencies used in this technique are

much higher than those typically used in modal analysis based

methods but are lower than the frequencies used for ultrasonic

testing. In this study, the excited frequencies lies in the range

between 200 and 1200 kHz, with dominant one about 700 kHz.

At such high frequencies, the response is dominated by the local

mode and the wavelength of the excitation is small enough to

detect incipient or potentially significant damage. (Ostachowicz

et al., [13]). By using the equation of the wave propagation speed,

the wave propagation speed is calculated as approximately

v = 4221,5 m/s.

In order to establish the accuracy of the present formulation and

the computer program developed by the author, the results

obtained from the present study are compared with the available

results in the literature. For this purpose, the first fundamental

frequency of a cantilever circular beam with an open edge are

calculated for different the location of crack ((L1/L)) and the crack

depth ratios for L = 2 m, D = 0.4 m, E = 216 GPa, r = 7850 kg/m3,

n = 0,33 and compared with those of Kısa and Güler [30] in the

Figure 6. As seen from Figure 6, the present results are close to the

results of Kısa and Güler [30].

Fig. 7 illustrates the transverse displacements at the free end of

the cantilever beam for different the crack locations (L1/L) for the

crack depth ratio a/D = 0.2.

It is seen from Fig. 7 that the crack location affects significantly

the wave propagation of the beam. It is seen from Fig. 6a that two

waves occur (namely the excitation and the reflected wave) in the

intact case. In Fig. 7a, the second wave occurs because of reflecting

from the boundaries of the clamped support. In the case of the

crack, additional secondary waves generate with first primary

waves (see the circles) in the Fig. 7b, Fig. 7c and Fig. 7d. The

additional secondary waves occur because of reflecting from the

cracks. Also, it is seen from Fig. 7 that the crack locations get closer

to the free end of the beam (namely, with the crack locations ratio

(L1/L) increases), the additional secondary waves appear signifi-

cantly and the amplitude of additional secondary waves increase

considerably. When the crack locations get closer to the clamped

support, additional secondary waves interfere with first primary

waves. This is because, with decrease in the distance between

clamped support and crack, the reflected waves of the clamped

support and the crack interfere with each other. The crack

locations get closer to the free end, the distance between first

Figure 8. Transverse displacement at the free end of the beam. a) Intact beam, b) a/D = 0.2, c) a/D = 0.3, d) a/D = 0.4, e) a/D = 0.6 and f) a/
D = 0.8.
doi:10.1371/journal.pone.0100496.g008
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primary waves and additional secondary waves increase signifi-

cantly.

The position of the cracks and supports can be calculated by

using wave propagation analysis.

For this purpose, the position of the clamped support and the

cracks are calculated by using Fig. 7.

Firstly, the position of the clamped support is calculated by

using Fig. 7a: The time interval from the first wave (the excitation

wave) and the second wave (reflected wave from the clamped

support) is Dt~7:1|10{4sn(see Fig. 7a). It should be noted again

that the wave propagation speed is v = 4221.5 m/s.

By using the relationship between velocity and time, the position

of clamped support from the end of the beam can be calculated as

follows;

XCS~v|Dt~4221:5|(7:1|10{4)~2:9972 m

As seen from the result, the present result is very close to the real

position of the clamped support from the end of the beam

(L = 3 m).

The positions of the cracks are calculated by Fig. 7b, Fig. 7c,

and Fig. 7d for L1/L = 0.2, L1/L = 0.4 and L1/L = 0.6, respectively.

For L1/L = 0.2. The time interval from the first wave (the

excitation wave) and the second wave (additional wave from the

crack) is Dt~5:684|10{4sn(see Fig. 7b). The position of the

crack from the end of the beam is calculated as follows;

XCrack~v|Dt~4221:5|(5:684|10{4)~2:3995 m

It is seen from the result, the present result is very close to the real

position of the crack from the end of the beam L = 2.4 m as shown

Fig. 7b.

For L1/L = 0.4:

The time interval from the first wave (the excitation wave) and

the second wave (additional wave from the crack) is

Dt~4:261|10{4sn(see Fig. 7c). The position of the crack from

the end of the beam is calculated as follows;

XCrack~v|Dt~4221:5|(4:261|10{4)~1:7987 m

It is seen from the result, the present result is very close to the real

position of the crack from the end of the beam L = 1.8 m as shown

Fig. 7c.

For L1/L = 0.6:

The time interval from the first wave (the excitation wave) and

the second wave (additional wave from the crack) is

Dt~2:81925|10{4sn(see Fig. 7d). The position of the crack

from the end of the beam is calculated as follows;

XCrack~v|Dt~4221:5|(2:81925|10{4)~1:1901 m

It is seen from the result, the present result is very close to the real

position of the crack from the end of the beam L = 1.2 m as shown.

It is deduced from Fig. 7 and results that the location of the

cracked section can be established by investigating the additional

secondary waves.

In Fig. 8, the transverse displacements at the free end of the

cantilever beam for different the crack depth ratios (a/D) for the

crack location L1/L = 0.5.

As seen from Fig. 8, with the crack depth increase, the

amplitude of additional wave increases considerably. This is

because by increasing in the crack depth, the strength of the

material decreases. Hence, the beam becomes more flexible. Also,

it is seen from Fig. 8 that the generation time and location of the

additional waves are same for different the crack depth ratios (a/

D). This is because; the location of the crack is not changed. It

shows that by using wave propagation analysis, structural damages

can be detected easily.

In Fig. 9, the effect of the Young’s modulus E on the wave

propagation of the beam is shown for a/D = 0.3 and L1/L = 0.5.

Figure 9. Transverse displacement at the free end of the beam. a) E = 70 GPa, b) E = 100 GPa, c) E = 300 GPa and d) E = 500 GPa.
doi:10.1371/journal.pone.0100496.g009
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It is seen from Fig. 9 that Young’s Modulus plays an important

role in the additional waves. With the increased Young’s Modulus

E, the amplitude of the additional wave dramatically decreases.

This is because by increasing in Young’s Modulus, the strength of

the material increases. Also, it is observed another result of Fig. 9

that with the increased Young’s Modulus E, the generation time

and location of the primary and additional waves decreases. It is

deduced from Fig. 9 that Young’s Modulus is very effective for

reducing the negative influence of the cracks.

Conclusions

Wave propagation in an edge circular cantilever beam under

the effect of an impact force is investigated. The effects of the

location of crack, the depth of the crack and Young’s Modulus on

the wave propagations of the circular beam are investigated in

detail. The following conclusions are reached from the obtained

results:

(1) The wave propagation analysis can easily be used for crack

detection procedures within structures.

(2) The crack locations can be established by investigating in the

additional waves.

(3) The magnitude of the crack is very effective in the amplitude

of additional waves.

(4) The crack locations and the crack depth have a great

influence on the wave propagation of the circular beam.

(5) There are significant differences of the wave propagation for

the cracked and intact circular beams.

(6) Young’s Modulus is very effective for reducing the negative

influence of the cracks.
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