Mevcut bir çelik kazıklı iskelenin TKLYDY-2020'ye göre hizmet verebilirlik analizinin yapılması
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Bursa Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/embargoedAccess
Özet
Kıyı yapılarının güvenle hizmet verebilmesi için depreme dayanıklı olması gerekmektedir. Bu gereklilik ülkemizdeki kıyı ve liman yapıları için gelişen teknolojiyle birlikte yönetmeliklerin güncellenmesini sağlamıştır. Bu çalışma kapsamında Türkiye Kıyı ve Liman Yapıları Deprem Yönetmeliği (TKLYDY) esaslarınca bir tersane tesisinde mevcut bir çelik kazıklı iskele yapısının statik ve dinamik analizleri yapılmıştır. Analizi yapılacak olan iskelenin yük hesabı için yanaşacak en büyük geminin büyüklüğü 40000 DWT olarak belirlenmiştir. İskeleye etki edecek gemi yanaşma yükleri ile baba çekme kuvvetlerinin bulunabilmesi için Türkiye Kıyıları için Rüzgâr ve Derin Deniz Dalga Atlası kullanılarak yapı önü dalga yüksekliği ve periyodu elde edilmiştir. Tesis alanında yapılmış olan jeolojik jeoteknik etüt raporu verileri ışığında zemin profili ve zemin parametreleri belirlenmiştir. Bu parametreler ile çelik kazıkların zemin içerisinde kalan kısımlarının zemin ile etkileşimini tanımlayan doğrusal olmayan zemin yaylarının statik ve dinamik yük etkisi altındaki davranışı belirlenmiştir. Ardından, analizde göz önüne alınacak deprem etkileri ve performans hedefleri belirlenmiştir. AFAD interaktif web uygulamasında tesisin bulunduğu yerin koordinatları esas alınarak DD-2 deprem düzeyi için deprem parametreleri belirlenmiş ve iskele yapısı normal yapılar sınıfında kabul edilmiştir. Bu verilerle iskelenin deprem tasarım sınıfı belirlenmiştir. TKLYDY (2020)'ye göre iskele yapısı iki aşamalı olarak çözülecektir. KLÖS=2 ve DTS=1 olarak tespit edilen iskele için birinci ve ikinci aşamada doğrusal olmayan statik itme analizi yöntemiyle çözümleme yapılacaktır. Birinci aşama çözümde DD-3 deprem düzeyi etkisinde itme analizi yapılarak Sınırlı Hasar (SH) performans hedefinin sağlanıp sağlanmadığı kontrol edilecektir. İkinci aşama çözümünde ise DD-1 deprem düzeyinde Göçme Öncesi (GÖ) performans hedefi sağlanacaktır. Analizler için iskele yapısının matematiksel modeli SAP2000 programı kullanılarak oluşturulmuştur. Taşıyıcı sistem modeli için yapının rölevesi kullanılmış; malzeme bilgisi ise yerinde yapılan test raporlarından alınmıştır. Analizden önce, iskeleye etkiyen statik yükler ve doğrusal olmayan yaylar programa tanımlanmıştır. Birinci aşama analiz ve değerlendirmede kullanılacak olan etkin kesit rijitlikleri XTRACT programı kullanılarak bulunmuş ve sistemin modal analizi yapılmıştır. Yapıda mafsallaşma öngörülen çubuk elemanlara plastik mafsal tanımlanmıştır. Birinci aşamada eylemsizlik hesapları için gerekli olan yapı hedef yer değiştirmesi hesaplanmıştır. TKLYDY (2020) ile yönetmeliğe giren kinematik etkileşim hesabı için ilk olarak PEER Ground Motion Database web tabanlı uygulamasında tesisin yer aldığı konumda beklenen, dünyadaki benzer depremler arasından yedi adet deprem kaydı seçilmiştir. Bu deprem kayıtları AFAD veri tabanından alınan DD-3 deprem düzeyi hedef spektrumu ile SeismoMatch programında benzeştirilmiştir. Benzeştirilen bu deprem kayıtları DeepSoil programına girilerek serbest zemin davranışı ile zeminde meydana gelen yer değiştirmeler bulunmuştur. Birinci aşama çözümleme bittikten sonra ikinci aşama çözümlemeye geçilmiştir. Bu aşamada benzer şekilde tüm işlemler DD-1 deprem düzeyi için tekrarlanmış ve GÖ performans düzeyi kontrol edilmiştir. Birinci ve ikinci aşama çözümlerde birleştirilmiş kinematik ve eylemsizlik etkileşim sonucu kontrolleri de yapılmıştır. Ayrıca, SAP2000 modelinde statik hesap için çelik kazığın gerilme kontrolleri, betonarme kazık kesiti kontrolleri ve kazık taşıma gücü kontrolleri yapılmış, yapının statik yükler altındaki durumu kontrol edilmiştir. Sonuç olarak; iskele yapısının statik hesap kontrolleri tamamlandıktan sonra SH ve GÖ performans düzeylerinin de sağlandığı görüldüğünden sistemin güvenle hizmet verebilir olduğuna karar verilmiştir.
In order to ensure safety, coastal structures must be earthquake-resistant. Therefore, regulations for coastal and harbor structures in our country have been updated with developing technology. This thesis focuses on the static and dynamic analysis of an existing steel piled wharf structure in a shipyard facility, in accordance with the Turkish Coastal and Harbor Structures Earthquake Regulations (TCHSER). To calculate the load of the wharf under analysis, we determined the size of the largest ship to be docked as 40000 DWT. We obtained the wave height and period in front of the structure using the Wind and Deep-Sea Wave Atlas for the Turkish Coasts to find the ship berthing loads and bollard pulling forces that will act on the wharf. The soil profile and soil parameters were determined based on the geological geotechnical survey report data. These parameters were used to determine the behavior of the nonlinear soil springs that define the interaction between the steel piles and the soil under static and dynamic loading. The earthquake effects and performance targets to be considered in the analysis were also determined. The earthquake parameters for DD-2 earthquake level were determined based on the coordinates of the facility location in the AFAD interactive web application. The wharf structure was considered a normal structure. The earthquake design class of the wharf was determined using this data. According to TCHSER (2020), the wharf structure will be solved in two stages. For the wharf, which has been determined as KLÖS=2 and DTS=1, the nonlinear static pushover analysis method will be used in both stages. In the first stage analysis, thrust analysis will be performed at the DD-3 earthquake level to check whether the Limited Damage (SH) performance level has been achieved or not. During the second stage of analysis, the performance level for Collapse Prevention (GÖ) will be achieved at DD-1 earthquake level. The mathematical model of the wharf structure was created using the SAP2000 program for the analyses. The structural system model was based on the survey of the structure, and the material information was obtained from on-site test reports. Prior to the analysis, the program defined static loads and nonlinear springs acting on the wharf. The initial analysis and evaluation of the structure involved determining the effective section stiffnesses using the XTRACT program. Modal analysis was then performed to assess the system. Plastic hinges were defined for the rod elements where plastic hinging was anticipated. The target displacement required for inertia calculations was calculated during the first stage. For the kinematic interaction calculation in TCHSER (2020), seven earthquake records were selected from the PEER Ground Motion Database web-based application. The earthquakes were chosen based on their similarity to those expected at the facility's location. The selected earthquake records were then simulated using the DD-3 earthquake level target spectrum from the AFAD database in the SeismoMatch program. The DeepSoil program was used to analyses simulated earthquake records and determine ground displacements with free ground behavior. The second stage analysis was then conducted for the DD-1 earthquake level to check the performance level of the GÖ. Both first and second stage solutions underwent combined kinematics and inertia interaction result checks. In addition, the static calculation in the SAP2000 model included stress checks for the steel pile, cross section checks for the reinforced concrete pile, and pile bearing capacity checks. After completing the static calculation checks of the wharf structure, it was determined that the SH and GÖ performance levels were met. Therefore, it was concluded that the system can safely operate
In order to ensure safety, coastal structures must be earthquake-resistant. Therefore, regulations for coastal and harbor structures in our country have been updated with developing technology. This thesis focuses on the static and dynamic analysis of an existing steel piled wharf structure in a shipyard facility, in accordance with the Turkish Coastal and Harbor Structures Earthquake Regulations (TCHSER). To calculate the load of the wharf under analysis, we determined the size of the largest ship to be docked as 40000 DWT. We obtained the wave height and period in front of the structure using the Wind and Deep-Sea Wave Atlas for the Turkish Coasts to find the ship berthing loads and bollard pulling forces that will act on the wharf. The soil profile and soil parameters were determined based on the geological geotechnical survey report data. These parameters were used to determine the behavior of the nonlinear soil springs that define the interaction between the steel piles and the soil under static and dynamic loading. The earthquake effects and performance targets to be considered in the analysis were also determined. The earthquake parameters for DD-2 earthquake level were determined based on the coordinates of the facility location in the AFAD interactive web application. The wharf structure was considered a normal structure. The earthquake design class of the wharf was determined using this data. According to TCHSER (2020), the wharf structure will be solved in two stages. For the wharf, which has been determined as KLÖS=2 and DTS=1, the nonlinear static pushover analysis method will be used in both stages. In the first stage analysis, thrust analysis will be performed at the DD-3 earthquake level to check whether the Limited Damage (SH) performance level has been achieved or not. During the second stage of analysis, the performance level for Collapse Prevention (GÖ) will be achieved at DD-1 earthquake level. The mathematical model of the wharf structure was created using the SAP2000 program for the analyses. The structural system model was based on the survey of the structure, and the material information was obtained from on-site test reports. Prior to the analysis, the program defined static loads and nonlinear springs acting on the wharf. The initial analysis and evaluation of the structure involved determining the effective section stiffnesses using the XTRACT program. Modal analysis was then performed to assess the system. Plastic hinges were defined for the rod elements where plastic hinging was anticipated. The target displacement required for inertia calculations was calculated during the first stage. For the kinematic interaction calculation in TCHSER (2020), seven earthquake records were selected from the PEER Ground Motion Database web-based application. The earthquakes were chosen based on their similarity to those expected at the facility's location. The selected earthquake records were then simulated using the DD-3 earthquake level target spectrum from the AFAD database in the SeismoMatch program. The DeepSoil program was used to analyses simulated earthquake records and determine ground displacements with free ground behavior. The second stage analysis was then conducted for the DD-1 earthquake level to check the performance level of the GÖ. Both first and second stage solutions underwent combined kinematics and inertia interaction result checks. In addition, the static calculation in the SAP2000 model included stress checks for the steel pile, cross section checks for the reinforced concrete pile, and pile bearing capacity checks. After completing the static calculation checks of the wharf structure, it was determined that the SH and GÖ performance levels were met. Therefore, it was concluded that the system can safely operate
Açıklama
25.10.2024 tarihine kadar kullanımı yazar tarafından kısıtlanmıştır.
Anahtar Kelimeler
İnşaat Mühendisliği, Civil Engineering