Ofis binaları için enerji verimli ısıtma-soğutma-güç sistemleri
Yükleniyor...
Dosyalar
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
BTÜ, Fen Bilimleri Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Ekonomik ve siyasi gereklilikler sonucu tüm dünyada yenilenebilir enerji yatırımları çeşitli teşvikler ile desteklenmekte, fosil yakıtlı sistemler ise regülasyonlar ile kısıtlanmaktadır. Bu tez; klasik ısıtma, soğutma, güç sistemlerini daha verimli hale getirmek veya alternatiflerini, yenilenebilir enerji kaynaklı sistemler ile üretmek ve bu alternatifi ofis binası kimliğine uygun yapılarda sayısal ortamda uygulamayı amaçlamaktadır. Bu nedenle ofis binası kimliğine uygun üç farklı sistem tasarımı sayısal ortamda farklı senaryolar olarak yürütülmüştür. Bu senaryolar klasik ısıtma-soğutma sistemi, birleşik soğutma-ısıtma-güç sistemi ve sıfır enerji binası olarak belirlenmiştir. Her bir senaryo için Bursa-Türkiye iklim şartlarında, kamu binası olarak hizmet vermekte olan, 1558 m2 taban alanı oturumlu, 6 katlı ve 9026 m2 kapalı alana sahip örnek binanın enerji ve yaşam döngüsü maliyet analizleri ayrı ayrı yapılmış olup, yenilenebilir enerji kaynaklı senaryo için 3 farklı alt senaryo üretilmiştir. Hourly Analysis Program (HAP) tarafından yürütülen analiz sonucu; bina soğutma dizayn yükü 742,7 kW, bina ısıtma dizayn yükü ise 439,8 kW olarak bulunmuştur. Toprak kaynaklı ısı pompası hesabı U tipi dikey kuyu tasarımı esas alınarak yapılmış olup, soğutma için gerekli kuyu boyu 20.371 m, ısıtma için gerekli kuyu boyu 9.137 m olarak hesaplanmıştır. Dikey kuyu boyu hesapları sonrası kuyuya deşarj edilen ortalama ısı miktarı -44,3 W/m, kuyudan çekilen ortalama ısı miktarı ise 34 W/m olarak belirlenmiştir. Fotovoltaik tesis yıllık enerji üretimi 607.639 kWh olarak belirlenmiş olup poly kristal silisyum hücreli paneller ile toplam yüzey alanı 2.787 m2 olan tesis kurulumu öngörülmüştür. Bu tesisin fotovoltaik panel kurulu gücü 463 kWp olarak hesaplanmıştır. Yaşam döngüsü maliyet analizleri P1-P2 metot kullanılarak yapılmış olup hesaplamalar sonucu birleşik soğutma-ısıtma-güç tesisi için fazladan yatırım bedeli geri ödeme süresi 37 ay iken iyileştirilmiş sıfır enerji binası dizaynı için 94 ay olarak bulunmuştur. Benzer olarak tesis yatırım bedelinin tamamını geri ödeme süresi ise birleşik soğutma-ısıtma-güç tesisi için 58 ay, iyileştirilmiş sıfır enerji binası için 127 ay olarak belirlenmiştir. Sonuç olarak ofis binası kimliğine uygun hibrit sıfır enerji binası (hava soğutmalı kondenser + toprak kaynaklı ısı pompası+ hava kaynaklı soğutucu+ fotovoltaik güç tesisi) tasarımı önerilmiştir.
As a result of economic and political requirements, renewable energy investments are supported with various incentives all over the world, while fossil fuel systems are restricted by regulations. This article aims to make conventional heating, cooling and power systems more efficient or to develop an alternative system based on renewable energy by modelling an office building. For this reason, three different system designs compatible with office building identity are constructed as different scenarios on a computational setting. These scenarios are determined as classical heating-cooling system, combined cooling-heating-power system and zero energy building. Energy and life-cycle cost analyses of the test building, which serves as a public facility in the climate conditions of Bursa – Turkey, are conducted separately for each scenario, and 3 different sub-scenarios were generated under the renewable energy scenario. As a result of the analysis performed by using Hourly Analysis Program (HAP), the building's cooling design load was found to be 742.7 kW, and the heating design load was found to be 439.8 kW. The ground source heat pump calculation was performed by taking U-type vertical borehole as basis, which gave the resulting figures of necessary borehole length, 20,371 m for cooling and 9,137 m for heating. After vertical borehole calculations, the average amount of heat discharged into the borehole was determined as -44,3 W/m, and the average amount of heat drawn from the borehole was determined as 34 W/m. Annual energy generation of the photovoltaic plant was determined as 607.639 kWh, a value that was projected by a plant installation with polycrystalline silicon photovoltaic panel with a total surface area of 2.787 m2. The photovoltaic panel installed power of for this plant was calculated as 463 kWp. Lifecycle cost analyses were performed by using P1-P2 method and according to the calculations, the payback period for the extra investment cost is 37 months for the combined cooling-heating-power plant, whereas it is 94 months for the improved zero energy building design. Similarly, the payback period for the full investment cost is determined as 58 months for the combined cooling-heating-power plant, and 127 months for the improved zero energy building design. As a result, a hybrid zero energy building (air source condenser + ground source heat pump, hava kaynaklı soğutucu, photovoltaic power plant) is proposed as the best design option for the office building identity.
As a result of economic and political requirements, renewable energy investments are supported with various incentives all over the world, while fossil fuel systems are restricted by regulations. This article aims to make conventional heating, cooling and power systems more efficient or to develop an alternative system based on renewable energy by modelling an office building. For this reason, three different system designs compatible with office building identity are constructed as different scenarios on a computational setting. These scenarios are determined as classical heating-cooling system, combined cooling-heating-power system and zero energy building. Energy and life-cycle cost analyses of the test building, which serves as a public facility in the climate conditions of Bursa – Turkey, are conducted separately for each scenario, and 3 different sub-scenarios were generated under the renewable energy scenario. As a result of the analysis performed by using Hourly Analysis Program (HAP), the building's cooling design load was found to be 742.7 kW, and the heating design load was found to be 439.8 kW. The ground source heat pump calculation was performed by taking U-type vertical borehole as basis, which gave the resulting figures of necessary borehole length, 20,371 m for cooling and 9,137 m for heating. After vertical borehole calculations, the average amount of heat discharged into the borehole was determined as -44,3 W/m, and the average amount of heat drawn from the borehole was determined as 34 W/m. Annual energy generation of the photovoltaic plant was determined as 607.639 kWh, a value that was projected by a plant installation with polycrystalline silicon photovoltaic panel with a total surface area of 2.787 m2. The photovoltaic panel installed power of for this plant was calculated as 463 kWp. Lifecycle cost analyses were performed by using P1-P2 method and according to the calculations, the payback period for the extra investment cost is 37 months for the combined cooling-heating-power plant, whereas it is 94 months for the improved zero energy building design. Similarly, the payback period for the full investment cost is determined as 58 months for the combined cooling-heating-power plant, and 127 months for the improved zero energy building design. As a result, a hybrid zero energy building (air source condenser + ground source heat pump, hava kaynaklı soğutucu, photovoltaic power plant) is proposed as the best design option for the office building identity.
Açıklama
Anahtar Kelimeler
Makine Mühendisliği, Mechanical Engineering, Enerji, Energy