Alev geciktiricili termoset kompozitlerin UP ve UV reçine ile tamir edilmesi sonrası mekanik özellikleri ve karakterizasyonu
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Bursa Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/embargoedAccess
Özet
Kompozit malzemeler iki veya daha fazla bileşenin bir araya gelmesi ile oluşan malzemelerdir. Polimer matrisli kompozitler hafiflik, yüksek özgül mukavemet ve modül gibi avantajlar sağlarlar. Sektörde çoğunlukla kullanılan matris polyester (UP) reçinedir. Fakat fotokürlenen (UV) reçineler de son zamanlarda kullanılan ürünler arasındadır. Geleneksel reçinelere göre uygulama kolaylığı, kısa çevrim süresi, kolay ekipman temizliği sağlarlar. Kompozit malzemelere alev geciktirici özellik kazandırmak için bazı katkılar kullanılabilmektedir. Alüminyum Trihidrat (ATH), Amonyum Polifosfat (APP) ve Çinko Borat (ZB) bu katkılardan bazılarıdır. Kompozitler hasar aldıklarında tamir edilebilen ürünlerdir. Özellikle montaj veya yapısal birleştirme işlemlerinde bağlantı elemanları için kompozit yapılara delik açılabilmektedir. Bakım ve üretim esnasında eksik bağlantı elemanları, kötü veya yanlış montajdan kaynaklanan problemler yaşanabilir. Böyle durumlarda parçayı en baştan üretmek hem zaman hem de maliyet açısından kayıp oluşturmaktadır. Bu sebeple kompozitler için geliştirilen birçok tamir yöntemi mevcuttur. Kıyılmış lifler ile onarım ve yama ile onarım bu yöntemlerden birkaçıdır. Gerçekleştirilen tez çalışmasında, cam elyaf takviyeli polyester kompozitler üretilmiş, kompozitlerin içerisine reçine ağırlığına göre %10, %15 ve %20 oranlarında alev geciktirici katkılar olan ATH, APP ve ZB eklenmiştir. Üretilen kompozit numunelerin orta noktalarına 5 mm çapta delikler açılmıştır. Açılan bu delikler UV reçine ve UP reçine kullanılarak tamir edilmiştir. Tamir aşamasında ilk önce delik öğütülmüş cam elyaf içeren reçine ile doldurulmuş akabinde de delikli yüzeyin ön ve arkalarına birer kat elyaf yamalanmıştır. Katların birbirine konsolidasyonunun sağlanması için vakum torbalama yönteminden yardım alınmıştır. Tamir öncesi ve sonrası mekanik özelliklerin yanında cam elyaf oranı ve kompozitin yanma davranışı incelenmiştir. Yapılan çalışmanın sonucunda çekme testlerine göre %10 miktarında ATH ilavesi ile mekanik özelliklerde nominal kompozite göre artış olduğu gözlenmiştir. Çekme testlerinde hasarsız ve katkı ihtiva eden gruplar içinde en yüksek sonucu 182 MPa ile N10ATH grubu, tamir edilmiş malzemeler içinde ise 134,48 MPa ile N10UV grubu vermiştir. Eğme testlerinde ise tüm gruplarda %15 APP içeren kompozitlerin en yüksek değere ulaştığı görülmektedir. Hasarsız gruplar arasında nominal kompozite göre 33,09 MPa artış sağlamıştır. Tamir edilmiş gruplarda ise yine en yüksek değer %15 APP ilaveli yapılardan elde edilmiştir. Cam elyaf içeriği sonuçlarına göre tamir sonrası elde edilen oran yine %10 APP ilaveli kompozitte görülmüştür. Yatay yanma sonuçlarında ise içinde APP bulunduran gruplardan hiçbirinde alev ilerlememiş ve kendi kendine sönmüştür. UP ve UV tamirat sonuçları kıyaslandığında, UP reçine yerine UV kürlenen reçine kullanıldığında mekanik ve yanma davranışı özelliklerinden zafiyet vermeden zaman tasarrufu yapılarak sürecin ilerletilebildiği soncuna ulaşılmıştır. Alev geciktirici katkıların ilavesi ile mekanik özelliklerde bir miktar artış olduğu sonucuna ulaşılmıştır. Belirli bir oranda kullanılan alev geciktirici katkılar ile hem mekanik özellikler hem de yanma davranışı özellikleri iyileştirilebilmektedir.
Composite materials are materials formed by combining two or more components. Polymer matrix composites provide advantages such as light weight, high specific strength and modulus. The matrix mostly used in the industry is polyester (UP) resin. However, photocurable (UV) resins have also been used recently. Compared to traditional resins, they provide ease of application, short cycle time and easy equipment cleaning. Some additives can be used to add flame retardant properties to composite materials. Aluminum Trihydrate (ATH), Ammonium Polyphosphate (APP) and Zinc Borate (ZB) are some of these additives. Composites are products that can be repaired when damaged. Especially in assembly or structural joining processes, holes can be drilled into composite structures for fasteners. During maintenance and production, problems may occur due to missing fasteners, poor or incorrect assembly. In such cases, producing the part from scratch is a loss in terms of both time and cost. For this reason, there are many repair methods developed for composites. Repair with chopped fibers and patch repair are some of these methods. In the thesis study, glass fiber reinforced polyester composites were produced and flame retardant additives ATH, APP and ZB were added to the composites at the ratios of 10%, 15% and 20% according to the resin weight. Holes with a diameter of 5 mm were drilled at the center points of the composite samples. These holes were repaired using UV resin and UP resin. At the repair stage, the hole was first filled with resin containing chopped glass fiber, and then one layer of fiber was patched on the front and back of the perforated surface. Vacuum bagging method was used to consolidate the plies together. Mechanical properties, glass fiber ratio and combustion behavior of the composite were investigated before and after repair process. As a result of the study, according to the tensile tests, an increase in mechanical properties was observed with the addition of 10% ATH compared to the initial composite. In tensile tests, N10ATH group gave the highest result with 182 MPa among the undamaged and additive groups and N10UV group gave the highest result with 134.48 MPa among the repaired groups. In flexural tests, composites containing 15% APP reached the highest value in all groups. Among the undamaged groups, it provided an increase of 33.09 MPa compared to the initial composite. In the repaired groups, the highest value was obtained from the structures with 15% APP addition. According to the glass fiber content results, the ratio obtained after repair was again seen in the composite with 10% APP addition. In the horizontal combustion results, the flame did not progress in any of the groups containing APP and extinguished on its own. When the UP and UV repair results are compared, it is concluded that when UV cured resin is used instead of UP resin, the process can be advanced by saving time without compromising the mechanical and combustion behavior properties. It was concluded that there was some increase in mechanical properties with the addition of flame retardant additives. Both mechanical properties and combustion behavior properties can be improved with flame retardant additives used at a certain ratio. As a result of the study, it was concluded that when UV cured resin is used instead of UP resin, which is traditionally used in the sector in the repair stage, the process can be advanced by saving time without compromising the mechanical and combustion behavior properties. It was concluded that there was some increase in mechanical properties with the addition of flame retardant additives. Both mechanical properties and combustion behavior properties can be improved with flame retardant additives used at a certain ratio.
Composite materials are materials formed by combining two or more components. Polymer matrix composites provide advantages such as light weight, high specific strength and modulus. The matrix mostly used in the industry is polyester (UP) resin. However, photocurable (UV) resins have also been used recently. Compared to traditional resins, they provide ease of application, short cycle time and easy equipment cleaning. Some additives can be used to add flame retardant properties to composite materials. Aluminum Trihydrate (ATH), Ammonium Polyphosphate (APP) and Zinc Borate (ZB) are some of these additives. Composites are products that can be repaired when damaged. Especially in assembly or structural joining processes, holes can be drilled into composite structures for fasteners. During maintenance and production, problems may occur due to missing fasteners, poor or incorrect assembly. In such cases, producing the part from scratch is a loss in terms of both time and cost. For this reason, there are many repair methods developed for composites. Repair with chopped fibers and patch repair are some of these methods. In the thesis study, glass fiber reinforced polyester composites were produced and flame retardant additives ATH, APP and ZB were added to the composites at the ratios of 10%, 15% and 20% according to the resin weight. Holes with a diameter of 5 mm were drilled at the center points of the composite samples. These holes were repaired using UV resin and UP resin. At the repair stage, the hole was first filled with resin containing chopped glass fiber, and then one layer of fiber was patched on the front and back of the perforated surface. Vacuum bagging method was used to consolidate the plies together. Mechanical properties, glass fiber ratio and combustion behavior of the composite were investigated before and after repair process. As a result of the study, according to the tensile tests, an increase in mechanical properties was observed with the addition of 10% ATH compared to the initial composite. In tensile tests, N10ATH group gave the highest result with 182 MPa among the undamaged and additive groups and N10UV group gave the highest result with 134.48 MPa among the repaired groups. In flexural tests, composites containing 15% APP reached the highest value in all groups. Among the undamaged groups, it provided an increase of 33.09 MPa compared to the initial composite. In the repaired groups, the highest value was obtained from the structures with 15% APP addition. According to the glass fiber content results, the ratio obtained after repair was again seen in the composite with 10% APP addition. In the horizontal combustion results, the flame did not progress in any of the groups containing APP and extinguished on its own. When the UP and UV repair results are compared, it is concluded that when UV cured resin is used instead of UP resin, the process can be advanced by saving time without compromising the mechanical and combustion behavior properties. It was concluded that there was some increase in mechanical properties with the addition of flame retardant additives. Both mechanical properties and combustion behavior properties can be improved with flame retardant additives used at a certain ratio. As a result of the study, it was concluded that when UV cured resin is used instead of UP resin, which is traditionally used in the sector in the repair stage, the process can be advanced by saving time without compromising the mechanical and combustion behavior properties. It was concluded that there was some increase in mechanical properties with the addition of flame retardant additives. Both mechanical properties and combustion behavior properties can be improved with flame retardant additives used at a certain ratio.
Açıklama
25.01.2025 tarihine kadar kullanımı yazar tarafından kısıtlanmıştır.
Anahtar Kelimeler
Engineering Sciences, Polimer Bilim ve Teknolojisi, Polymer Science and Technology, Mühendislik Bilimleri