Sıvı akışkanlı borularda oluşan hidrolik güçten elektrik enerji üretiminin araştırılması ve sistem prototipinin oluşturulması
Yükleniyor...
Dosyalar
Tarih
2023
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Bursa Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Endüstriyel, belediye ve tarım tesislerinin yerçekimi ile beslenen boru hatlarındaki hareket eden sıvının enerjisinden faydalanılarak düşük maliyetli elektrik enerjisi üretimi gerçekleştirilebilir. Bilindiği üzere, enerji dağıtım hatlarından çekilen elektrik enerjisinin günlük tüketimi değişkenlik gösterdiği için "Günlük yük eğrisi" (GYE) olarak tanımlanmış bir eğri ortaya çıkmıştır. Buna benzer bir şekilde su dağıtım şebekesinde akan sudan üretilecek olan elektriksel güçte, suyun tüketim miktarına bağlı olarak gün içerisinde değişkenlik gösterecektir. Bu değişkenlik, tüketicilerin alışkanlıklarına ve mevsimlere bağımlıdır. Enerji üretiminde tüketime bağlı olarak yükselme ve azalmalar olur fakat kesinti olmaz. Bu etki ile birlikte tüketicilerin alışkanlıklarına ve mevsimlere bağlı olarak gün içerisindeki değişken akış koşullarında dahi sürekli ve yenilenebilir (yeşil) enerji üretimi sağlanabilir. Özellikle yerçekimi beslemeli su dağıtım şebekesine eklenebilen hidrokinetik türbinler vasıtasıyla şebeke borularının içerisinde hareket eden suyun enerjisi dönüştürülerek elektrik enerjisi üretilebilmektedir.Bu tez çalışması kapsamında, su şebekesine monte edilecek hidrokinetik enerji üretim sisteminden faydalanılarak elektrik enerjisi üretimi Matlab/Simulink ile simüle edilmiş ve enerji üretiminin araştırılması için laboratuvar ortamı içerisinde deney sistemi kurulmuştur. Matlab/Simulink' simülasyonunda, 1334 watt mekanik giriş gücünün uygulandığı 3 fazlı Sabit Mıknatıslı Senkron Generatör (SMSG) çıkışından 1251 watt elektriksel güç üretimi gerçekleştirilmiştir. Generatörün çıkışı, 3 fazlı tam dalga kontrolsüz köprü doğrultucu ile doğrultma işleminden sonra 60V, 50Ah'lik seri bağlı iki adet li-on bataryanın şarjında kullanılmıştır. Su şebekesinde hidrokinetik enerji üretimi için kurulan deney setindeki santrifüj pompa (5,5 HP, 4 kW, 380 VOLT), 5.5 kW motopomp sürücüsü (3x220V) ile farklı sürme frekanslarında çalıştırılmıştır. Sürme frekansının değişmesiyle sistemin içerisindeki değişen debi ve basınç ile birlikte generatör çıkışında üretilen ve yüke aktarılan Pe elektriksel güç değişimi incelenmiştir. Debi ve basıncın artmasıyla birlikte sistemde üretilen elektriksel güç pozitif yönde artış göstermiştir. Generatörün 3 fazlı çıkışı, 3 fazlı kontrolsüz tam köprü doğrultucu (diyotlu doğrultucu) ile doğrultulup omik yük üzerinden elektriksel güç harcanmıştır. Motopomp 45 hz sürme frekansında sürüldüğünde deney setindeki debimetreden 36,13 m3/h bir debi ve basınç transmitterinden 1,206 bar basınç değeri ölçülmüş ve bu değerlerin bir fonksiyonu olan 1210 watt hidrolik güç motopomp tarafından sisteme aktarılmıştır. 20 Ω reosta üzerinden harcanan elektriksel güç ise 2,485 watt olarak ölçülmüştür. Ölçülen elektriksel güç değeri ile hidrolik güç yüzdelik oranı %0,002 olarak hesaplanmıştır. Bu çalışmada, su dağıtım şebekesine entegre edilmiş bir hidrokinetik enerji üretim sisteminin elektrik üretimini sağlayabileceği görülmüştür. Matlab/Simulink kullanılarak elde edilen simülasyon sonuçları ve laboratuvar kurulumundan elde edilen deneysel bulgular, tüketici alışkanlıklarına ve mevsimsel değişimlere duyarlı bu tür sistemlerin sürekli ve temiz enerji üretme potansiyeli hakkında değerli bilgiler vermektedir.
Low-cost electrical energy can be generated by utilizing the energy of moving fluid in gravity-fed pipelines of industrial, municipal and agricultural facilities. As it is known, since the daily consumption of electrical energy drawn from the power grid is not constant, a curve defined as the "Daily load curve" (DEE) has emerged. Similarly, the power to be produced from the water distribution pipelines varies during the day depending on the amount of water consume. This variability depends on the habits of the consumers and the seasons. During the year, there are increases and decreases in production depending on consumption, but there is no interruption. With this effect, continuous and renewable (green) energy production can be achieved, even in flow conditions that change during the day depending on consumer habits and seasons. Especially with the hydrokinetic turbine added to the gravity-fed water distribution network, electrical energy can be produced by converting the energy of the water moving in the pipe. In the scope of this thesis, electricity generation has been simulated using Matlab/Simulink by leveraging a hydrokinetic energy generation system integrated into the water distribution network. Furthermore, an experimental setup has been established in the laboratory environment to investigate energy production. In the Matlab/Simulink simulation, 1251 watts of electrical power were generated from an applied mechanical power of 1334 watts using a three-phase Permanent Magnet Synchronous Generator (PMSG). The generator output voltage was rectified to 60V using a 3-phase uncontrolled full-wave bridge rectifier, and this power was utilized to charge two series-connected 50Ah lithium-ion batteries. For the hydrokinetic energy production in the water network, the experimental setup included the centrifugal pump (4 kW 5.5 HP 380 VOLT) driven by 5.5 kW motor pump driver (3x220V) at different drive frequencies. By varying the drive frequency, the change in generated electrical power (Pe) at the generator output, and the power transferred to the load were examined in relation with the changing flow rate and pressure within the system. The electrical power generated in the system exhibited a positive increase with an increase in flow rate and pressure. The 3-phase output of the generator was rectified using a 3-phase uncontrolled full bridge rectifier (diode rectifier), and the electrical power was consumed by an ohmic load. When the motor pump was driven at a frequency of 45 Hz, the flow rate measured by the flowmeter in the experimental setup was 36.13 m3/h, and the pressure value measured by the pressure transmitter was 1.206 bar. These values corresponded to 1210 watts of hydraulic power transferred to the system by the motor pump. The electrical power consumed through a 20 Ω resistor was measured to be 2.485 watts. The percentage ratio of the measured electrical power to the hydraulic power was calculated as 0.002%. In conclusion, this study describes the utilization of a hydrokinetic energy generation system integrated into the water distribution network to produce electricity. The simulation results obtained using Matlab/Simulink and the experimental findings obtained from the laboratory setup provide valuable information about the potential of such systems to produce continuous and clean energy, sensitive to consumer habits and seasonal changes.
Low-cost electrical energy can be generated by utilizing the energy of moving fluid in gravity-fed pipelines of industrial, municipal and agricultural facilities. As it is known, since the daily consumption of electrical energy drawn from the power grid is not constant, a curve defined as the "Daily load curve" (DEE) has emerged. Similarly, the power to be produced from the water distribution pipelines varies during the day depending on the amount of water consume. This variability depends on the habits of the consumers and the seasons. During the year, there are increases and decreases in production depending on consumption, but there is no interruption. With this effect, continuous and renewable (green) energy production can be achieved, even in flow conditions that change during the day depending on consumer habits and seasons. Especially with the hydrokinetic turbine added to the gravity-fed water distribution network, electrical energy can be produced by converting the energy of the water moving in the pipe. In the scope of this thesis, electricity generation has been simulated using Matlab/Simulink by leveraging a hydrokinetic energy generation system integrated into the water distribution network. Furthermore, an experimental setup has been established in the laboratory environment to investigate energy production. In the Matlab/Simulink simulation, 1251 watts of electrical power were generated from an applied mechanical power of 1334 watts using a three-phase Permanent Magnet Synchronous Generator (PMSG). The generator output voltage was rectified to 60V using a 3-phase uncontrolled full-wave bridge rectifier, and this power was utilized to charge two series-connected 50Ah lithium-ion batteries. For the hydrokinetic energy production in the water network, the experimental setup included the centrifugal pump (4 kW 5.5 HP 380 VOLT) driven by 5.5 kW motor pump driver (3x220V) at different drive frequencies. By varying the drive frequency, the change in generated electrical power (Pe) at the generator output, and the power transferred to the load were examined in relation with the changing flow rate and pressure within the system. The electrical power generated in the system exhibited a positive increase with an increase in flow rate and pressure. The 3-phase output of the generator was rectified using a 3-phase uncontrolled full bridge rectifier (diode rectifier), and the electrical power was consumed by an ohmic load. When the motor pump was driven at a frequency of 45 Hz, the flow rate measured by the flowmeter in the experimental setup was 36.13 m3/h, and the pressure value measured by the pressure transmitter was 1.206 bar. These values corresponded to 1210 watts of hydraulic power transferred to the system by the motor pump. The electrical power consumed through a 20 Ω resistor was measured to be 2.485 watts. The percentage ratio of the measured electrical power to the hydraulic power was calculated as 0.002%. In conclusion, this study describes the utilization of a hydrokinetic energy generation system integrated into the water distribution network to produce electricity. The simulation results obtained using Matlab/Simulink and the experimental findings obtained from the laboratory setup provide valuable information about the potential of such systems to produce continuous and clean energy, sensitive to consumer habits and seasonal changes.
Açıklama
Anahtar Kelimeler
Enerji, Energy, Electrical, Electronics Engineering, Elektrik, Elektronik Mühendisliği