DC01 çeliğinin galvaniz kaplanması ve kaplama yapısının modifiye edilerek yüzey özelliklerine etkisinin incelenmesi
Yükleniyor...
Dosyalar
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Bursa Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu tez çalışması; sıcak daldırma galvaniz (SDG), elektrogalvaniz (EG) ve bu kaplamalar sonrasında farklı parametrelerle uygulanan difüzyon tavlamasının, endüstriyel uygulamalarda yaygın olarak kullanılan DC01 çelik borunun yüzey özelliklerine etkisini içermektedir. Tezin temel amacı, her iki kaplama yönteminin ve sonrasında uygulanan difüzyon tavlaması işleminin yapısal, aşınma ve korozyon özellikleri üzerindeki etkilerini incelemektedir. Tez kapsamında, DC01 çelik numuneler sıcak daldırma galvaniz kaplama ve elektrogalvaniz kaplama işlemine tabi tutulmuş ve ardından farklı difüzyon tavlaması sıcaklıklarına maruz bırakılmıştır. Çalışmada kullanılan DC01 çeliği, sıcak daldırma galvaniz kaplanıp 500°C, 550°C ve 600°C'de difüzyon tavlaması yapılmış ve aynı şekilde DC01 çeliği elektrogalvaniz kaplanıp aynı sıcaklıklarda difüzyon tavlaması işlemine tabi tutulmuştur. Numuneler, kaplama tipine ve difüzyon tavlaması sıcaklıklarına göre SDG-500, SDG-550, SDG-600, EG-500, EG-550 ve EG-600 şeklinde kodlandırılmıştır. Kaplama işleminin ve kaplama sonrası uygulanan difüzyon tavlamasının, numunelerin yüzey morfolojisi, kaplama kalınlıkları ve kesitleri üzerindeki etkileri EDS donanımlı taramalı elektron mikroskopu (SEM) aracılığıyla incelenmiştir. Numunelerin faz analizleri X-ışını difraktometresi (XRD) ile yapılmıştır. Numunelerin aşınma testleri, karşıt hareketli aşınma test cihazıyla yapılmış ve sürtünme katsayısı verileri elde edilmiştir. Numunelerin korozyon performansları ASTM B117 standardına göre tuz sisi testi ile gerçekleştirilmiştir. Kesit incelemeleri, elektrogalvaniz kaplamanın daha homojen ve tekdüze bir yapı sunduğunu, sıcak daldırma galvaniz kaplama numunelerinin kaplama kalınlığının elektrogalvaniz kaplama numunelerinden daha büyük olduğunu ortaya koymuştur. XRD analizi sonuçlarına göre, SDG numunesinde η-Zn(Fe), α-Fe(Zn), δ-FeZn10 ve ζ-FeZn13 fazları görülürken, EG numunesinde η-Zn(Fe), δ-FeZn10 ve α-Fe(Zn) fazları tespit edilmiştir. Difüzyon tavlaması yapılan SDG numunelerinde η-Zn(Fe), α-Fe(Zn), δ-FeZn10, ζ-FeZn13, Г-Fe3Zn10 ve ZnO fazları gözlenirken, difüzyon tavlaması yapılan EG numunelerinde η-Zn(Fe), δ-FeZn10, α-Fe(Zn), ζ-FeZn13 ve ZnO fazları tespit edilmiştir. EG-550 ve EG-600 numunelerinde bu fazlara ek olarak Γ1-Fe5Zn21 fazı da tespit edilmiştir. Aşınma sonuçları irdelendiğinde, EG-550 ve EG-600 numunelerinin diğer tüm kaplamalı numunelere göre aşınma izi genişliklerinin ve ortalama sürtünme katsayılarının daha düşük olduğu görülmüştür. Korozyon testi sonuçları incelendiğinde, korozyon sonrası yüzey görünümleri dikkate alındığında SDG-550 numunesinin en iyi korozyon direncini sunduğu değerlendirilmiştir. Her ne kadar SDG ve EG numunelerinin korozyon sonrası yüzey görünümleri benzerlik gösterse de taramalı elektron mikroskobu (SEM) görüntülerine bakıldığında, EG numunesinde iğneli bir yapı tespit edilmiştir. Ancak, SDG numunesinde bu yapı keskin olmayan bir yapıdadır. Aşınma testleri sonuçlarına göre, EG-550 ve EG-600 numunelerinin diğerlerine kıyasla daha düşük aşınma izi genişliği ve sürtünme katsayısı sunduğu belirlenmiştir. Bu sonuçlar ile EG-550 ve EG-600 numunelerinin aşınma direncinin geliştiği, korozyon testi sonuçlarına göre ise, SDG-550 numunesinin korozyon direncinin geliştiği söylenebilmektedir.
This thesis examines the effects of hot-dip galvanizing (HDG), electro-galvanizing (EG), and subsequent diffusion annealing with different parameters on the surface properties of DC01 steel pipes widely used in industrial applications. The primary objective of the thesis is to investigate the effects of both coating methods and the subsequent diffusion annealing process on the structural, wear, and corrosion properties. Within the scope of the thesis, DC01 steel samples were subjected to hot-dip galvanizing and electro-galvanizing processes, followed by exposure to different diffusion annealing temperatures. DC01 steel used in the study was hot dip galvanized and diffusion annealed at 500°C, 550°C and 600°C, and similarly DC01 steel was electrogalvanized and diffusion annealed at the same temperatures. The samples were coded as SDG-500, SDG-550, SDG-600, EG-500, EG-550, and EG-600 according to the coating type and diffusion annealing temperatures. The effects of the coating process and post-coating diffusion annealing on the surface morphology, coating thicknesses, and cross-sections of the samples were examined using Energy Dispersive Spectroscopy (EDS) equipped Scanning Electron Microscope (SEM). Phase analyses of the samples were conducted using X-ray Diffraction (XRD). Wear tests of the samples were performed using a reciprocating wear test machine, and friction coefficient data were obtained. The corrosion performances of the samples were evaluated using the salt spray test according to ASTM B117 standard. Cross-sectional examinations revealed that electrogalvanized coating offers a more homogeneous and uniform structure, and the coating thickness of hot-dip galvanized coating samples is greater than that of electrogalvanized coating samples. According to XRD analysis results, the SDG sample exhibited phases of η-Zn (Fe), α-Fe (Zn), δ-FeZn10, and ζ-FeZn13, whereas the EG sample showed phases of η-Zn (Fe), δ-FeZn10, and α-Fe (Zn). Diffusion annealed SDG samples revealed the presence of phases such as η-Zn (Fe), α-Fe (Zn), δ-FeZn10, ζ-FeZn13, Γ-Fe3Zn10 and ZnO while diffusion annealed EG samples exhibited phases including η-Zn (Fe), δ-FeZn10, α-Fe (Zn), ζ-FeZn13 and ZnO. In addition to these phases, Γ1-Fe5Zn21 phase was also detected in EG-550 and EG-600 samples. When the wear results were examined, it was seen that the wear scar widths and average friction coefficients of EG-550 and EG-600 samples were lower than all other coated samples. When the corrosion test results were examined, it was seen that the SDG-550 sample offered the most superior corrosion resistance. Although the surface appearance of the SDG and EG samples after corrosion is similar, a needle structure was detected in the EG sample when scanning electron microscope (SEM) images were examined. However, in the SDG sample, this structure is not sharp. According to the wear test results, it was determined that EG-550 and EG-600 samples presented lower wear scar width and friction coefficient compared to the others. With these results, it can be said that the wear resistance of the EG-550 and EG-600 samples has improved, and according to the corrosion test results, the corrosion resistance of the SDG-550 sample has improved.
This thesis examines the effects of hot-dip galvanizing (HDG), electro-galvanizing (EG), and subsequent diffusion annealing with different parameters on the surface properties of DC01 steel pipes widely used in industrial applications. The primary objective of the thesis is to investigate the effects of both coating methods and the subsequent diffusion annealing process on the structural, wear, and corrosion properties. Within the scope of the thesis, DC01 steel samples were subjected to hot-dip galvanizing and electro-galvanizing processes, followed by exposure to different diffusion annealing temperatures. DC01 steel used in the study was hot dip galvanized and diffusion annealed at 500°C, 550°C and 600°C, and similarly DC01 steel was electrogalvanized and diffusion annealed at the same temperatures. The samples were coded as SDG-500, SDG-550, SDG-600, EG-500, EG-550, and EG-600 according to the coating type and diffusion annealing temperatures. The effects of the coating process and post-coating diffusion annealing on the surface morphology, coating thicknesses, and cross-sections of the samples were examined using Energy Dispersive Spectroscopy (EDS) equipped Scanning Electron Microscope (SEM). Phase analyses of the samples were conducted using X-ray Diffraction (XRD). Wear tests of the samples were performed using a reciprocating wear test machine, and friction coefficient data were obtained. The corrosion performances of the samples were evaluated using the salt spray test according to ASTM B117 standard. Cross-sectional examinations revealed that electrogalvanized coating offers a more homogeneous and uniform structure, and the coating thickness of hot-dip galvanized coating samples is greater than that of electrogalvanized coating samples. According to XRD analysis results, the SDG sample exhibited phases of η-Zn (Fe), α-Fe (Zn), δ-FeZn10, and ζ-FeZn13, whereas the EG sample showed phases of η-Zn (Fe), δ-FeZn10, and α-Fe (Zn). Diffusion annealed SDG samples revealed the presence of phases such as η-Zn (Fe), α-Fe (Zn), δ-FeZn10, ζ-FeZn13, Γ-Fe3Zn10 and ZnO while diffusion annealed EG samples exhibited phases including η-Zn (Fe), δ-FeZn10, α-Fe (Zn), ζ-FeZn13 and ZnO. In addition to these phases, Γ1-Fe5Zn21 phase was also detected in EG-550 and EG-600 samples. When the wear results were examined, it was seen that the wear scar widths and average friction coefficients of EG-550 and EG-600 samples were lower than all other coated samples. When the corrosion test results were examined, it was seen that the SDG-550 sample offered the most superior corrosion resistance. Although the surface appearance of the SDG and EG samples after corrosion is similar, a needle structure was detected in the EG sample when scanning electron microscope (SEM) images were examined. However, in the SDG sample, this structure is not sharp. According to the wear test results, it was determined that EG-550 and EG-600 samples presented lower wear scar width and friction coefficient compared to the others. With these results, it can be said that the wear resistance of the EG-550 and EG-600 samples has improved, and according to the corrosion test results, the corrosion resistance of the SDG-550 sample has improved.
Açıklama
Anahtar Kelimeler
Wear, Daldırma kaplama yöntemi, Dipping coating method, Düşük karbonlu çelik, Low carbon steel, Yüzey kaplama, Surface coating, Çinko kaplama, Aşınma, Zinc coating