Kuaterner amonyum tuzu ve N-halamin esaslı metakrilamid polimerlerin sentezi ve dual antibakteriyel etkilerinin incelenmesi
Yükleniyor...
Dosyalar
Tarih
2018
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Bursa Teknik Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Dünyanın hemen hemen her yerinde tehdit oluşturan enfeksiyon kaynaklı ölümcül hastalıkların önlenebilmesi için güçlü ve hızlı etki gösteren antibakteriyel malzemelere gereksinim duyulmaktadır. Bu alandaki malzemelerin geliştirilmesi amacıyla antibakteriyel polimerler üstün performans özellikleri sayesinde yaygın olarak kullanılmaktadır. Farklı yapılarda olan antibakteriyel ajanların arasında N-halamin ve kuaterner amonyum bileşikleri en önemlileri ve en çok tercih edilenleridir. Kuaterner amonyum bileşikleri uzun ömürlü aktivasyon ve yüksek kimyasal stabilite göstermelerine rağmen bazı bakteri türlerine karşı güçlü aktivite gösteremeyip kullanım alanları sınırlanmaktadır. N-halamin bileşikleri ise çok çeşitli türe karşı güçlü ve hızlı etkinlik gösterme ve ekonomik olma gibi avantajlarının yanı sıra antibakteriyel etkinlikleri zamanla azalmaktadır. Bu çalışmada, her iki bileşiğin avantaj ve dezavantajları göz önünde bulundurularak, birlikte kullanımları ile daha güçlü ve hızlı antibakteriyel etki gösterebilen malzemelerin geliştirilmesi hedeflenmiştir. Bu kapsamda, N-[3(Dimetilamino)propil]metakrilamid (DMAPMA) monomeri polimerleştirilerek ve selülozik yüzeylere aşılanarak antibakteriyel malzemeler üretilmiştir. Sentezlenen polimerler ve modifiye edilmiş kumaşlar TGA, DSC ve FT-IR analizleri ile karakterize edilmiştir. Bu analizlerin sonuçları, polimer sentezinin ve kumaş modifikasyonun başarıyla gerçekleştiğini göstermektedir. Viskon kumaşlara uygulanan modifikasyon işlemlerinin kumaş mukavemetini olumsuz etkilemediği ancak kumaşın ısıl dayanımını klor ihtivası nedeniyle bir miktar düşürdüğü tespit edilmiştir. Yapılan tekrarlı klorlama ve ışık haslığı testleri neticesinde ise yüzeylerin tekrar klorlanabildiği fakat zamanla klor yükleme kapasitesinin düştüğü belirlenmiştir. Tekrarlı yıkama testleri sonucunda her ne kadar klorun yapıdan yıkama ile birlikte kolayca uzaklaştığı görülse de 30 yıkama sonrasında bile yaklaşık %90 oranında kaplamanın yüzeyde kaldığı tespit edilmiştir. Ayrıca modifiye kumaşların ışık haslıkları incelendiğinde 30 gün sonunda kumaşların üzerindeki kloru kaybettiği görülmüştür. N-halamin fonksiyonelliği yıkama ve ışık etkisi ile kayıp ediliyor olsa bile kuaterner amonyum bileşiklerinin yüzeyde kalıcı olmasından dolayı antibakteriyel özellik korunmuştur. Polimerlerin ve modifiye viskon kumaşların Gram-pozitif ve Gram-negatif bakterilere karşı hedeflenen ölçüde bakteri inaktivasyonu sağlanmıştır. Elde edilen sonuçlar doğrultusunda, geliştirilen dual etkili polimerlerin ve kumaşların güçlü ve uzun süreli antibakteriyel foksiyonelliğin gerektiği alanlarda kullanılabilirliği ortaya konmuştur.
Strong and fast acting antibacterial materials are needed to prevent the deadly diseases caused by infections threatening nearly all over the world. Antibacterial polymers are widely used due to their superior properties comparing to the monomeric agents. Among various antibacterial agents, N-halamine and quaternary ammonium compounds are the most important and most preferred ones. Although quaternary ammonium compounds show long-lasting activation and high chemical stability, they are not able to show strong activity against some bacterial species limiting their usage areas. N-halamine compounds, in addition to the advantages of being powerful and fast acting against a wide variety of species and being economical, their antibacterial activity diminish over time. In this study, it was aimed to develop antibacterial materials exhibiting stronger and faster antibacterial activity by using N-halamines and quaternary ammonium compounds together, taking into consideration the advantages and disadvantages of both compounds. In this context, antibacterial materials have been produced by polymerizing N-[3(dimethylamino) propyl] methacrylamide (DMAPMA) monomer and by grafting onto cellulosic surfaces. The synthesized polymers and modified fabrics were characterized by TGA, DSC and FT-IR analyzes. The results of the analyzes showed that the polymer synthesis and the fabric modification have been successfully accomplished. The modification processes applied to viscose fabrics did not adversely affect the fabric strength, but reduce the thermal resistance of the fabric due to chlorine content. As a result of the repeated chlorination and light fastness tests, it was determined that the surfaces could be chlorinated repeatedly but the chlorine loading capacity decreases over time. As a result of repeated washing tests, it was found that about 90% of the coating remained on the surface even after 30 washes, although it appeared that the chlorine was easily removed with the washing. In addition, when the light fastness of modified fabrics was examined, the amount of chlorine exhausted within 30 days. Even though, the N-halamine functionality was lost by washing and light irradiation, the antibacterial property is preserved by quaternary ammonium compounds remaining on the surfaces. Bacterial inactivation of polymers and modified viscose fabrics against Gram-positive and Gram-negative bacteria was sufficient against a targeted concentration of bacteria. In the light of the results obtained, it has been demonstrated that the developed dual acting polymers and fabrics can be used in areas where strong and long-lasting antibacterial functionality is required.
Strong and fast acting antibacterial materials are needed to prevent the deadly diseases caused by infections threatening nearly all over the world. Antibacterial polymers are widely used due to their superior properties comparing to the monomeric agents. Among various antibacterial agents, N-halamine and quaternary ammonium compounds are the most important and most preferred ones. Although quaternary ammonium compounds show long-lasting activation and high chemical stability, they are not able to show strong activity against some bacterial species limiting their usage areas. N-halamine compounds, in addition to the advantages of being powerful and fast acting against a wide variety of species and being economical, their antibacterial activity diminish over time. In this study, it was aimed to develop antibacterial materials exhibiting stronger and faster antibacterial activity by using N-halamines and quaternary ammonium compounds together, taking into consideration the advantages and disadvantages of both compounds. In this context, antibacterial materials have been produced by polymerizing N-[3(dimethylamino) propyl] methacrylamide (DMAPMA) monomer and by grafting onto cellulosic surfaces. The synthesized polymers and modified fabrics were characterized by TGA, DSC and FT-IR analyzes. The results of the analyzes showed that the polymer synthesis and the fabric modification have been successfully accomplished. The modification processes applied to viscose fabrics did not adversely affect the fabric strength, but reduce the thermal resistance of the fabric due to chlorine content. As a result of the repeated chlorination and light fastness tests, it was determined that the surfaces could be chlorinated repeatedly but the chlorine loading capacity decreases over time. As a result of repeated washing tests, it was found that about 90% of the coating remained on the surface even after 30 washes, although it appeared that the chlorine was easily removed with the washing. In addition, when the light fastness of modified fabrics was examined, the amount of chlorine exhausted within 30 days. Even though, the N-halamine functionality was lost by washing and light irradiation, the antibacterial property is preserved by quaternary ammonium compounds remaining on the surfaces. Bacterial inactivation of polymers and modified viscose fabrics against Gram-positive and Gram-negative bacteria was sufficient against a targeted concentration of bacteria. In the light of the results obtained, it has been demonstrated that the developed dual acting polymers and fabrics can be used in areas where strong and long-lasting antibacterial functionality is required.
Açıklama
Anahtar Kelimeler
Polimer Bilim ve Teknolojisi, Polymer Science and Technology