Pervaporasyon membran reaktörde gama-valerolakton sentezi
Yükleniyor...
Dosyalar
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Bursa Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Son yıllarda, endüstrilerin ve tüketicilerin çevre dostu ve sürdürülebilir alternatiflere olan ilgisi hızla artmıştır. Geleneksel petrol bazlı ürünlere alternatif olarak, yenilenebilir kaynaklardan elde edilen yakıt ve kimyasalların üretimi giderek daha fazla önem kazanmaktadır. Bu eğilim, biyolojik olarak parçalanabilen ve çevreye duyarlı olan ürünlerin tercih edilmesi gerektiği fikrine dayanmaktadır. Bu bağlamda, tarımsal atıklar veya lignoselülozik materyaller gibi biyokütle kaynaklarından elde edilen furfural, dikkate değer bir yenilenebilir kaynak olarak öne çıkmaktadır. Furfural, yüksek değerli kimyasallara dönüştürülebilen ve özellikle gama-valerolakton (GVL) gibi çok yönlü bir bileşik üretebilen önemli bir ara üründür. GVL; solvent, yakıt katkı maddesi veya ara ürün olarak çeşitli endüstrilerde kullanılmakta ve bu bağlamda dikkate değer bir potansiyele sahiptir. Bu nedenle, GVL'nin biyokütle kaynaklarından elde edilmesi, yenilenebilir kaynaklara dayalı endüstrilerin gelişimi açısından büyük önem taşımaktadır. Bu çalışma, hem furfuralın tek adımda GVL sentezi için kullanılacak olan pervaporasyon membran reaktör prosesi açısından hem de reaksiyonda kullanılması planlanan katalizörler açısından oldukça özgün bir değere sahiptir. Seçilen polibenzimidazol (PBI) membranın hem GVL sentezinde hem de pervaporasyon membran reaktör uygulamasında daha önce tercih edilmemiş olması, bu çalışmanın özgünlüğünü artırmaktadır. Katalizör sentezi, kullanılan hidrofilik membran ve optimum reaksiyon koşullarının belirlenmesi yönüyle hibrit üretim yöntemi oluşturulması açısından da öncü niteliktedir. Aynı zamanda, geleneksel sentez yöntemleriyle karşılaştırmak amacıyla kesikli reaktörde tüm denemeler gerçekleştirilmiş ve sonuçlar kapsamlı bir şekilde yorumlanmıştır. Bu çalışmada, furfuraldan GVL sentezi için bifonksiyonel H₃PW₁₂O₄-UiO-66 katalizörünün kullanımı araştırılmıştır. PBI polimeri kullanılarak membran hazırlanmış ve farklı miktarlarda H₃PW₁₂O₄ içeren H₃PW₁₂O₄-UiO-66 katalizörleri sentezlenmiştir. Bu katalizörlerin katalitik aktiviteleri, furfuraldan GVL elde etmek amacıyla pervaporasyon membran reaktöründe (PVMR) test edilmiştir ve 2 g H₃PW₁₂O₄ içeren katalizörün en uygun katalizör olduğu belirlenmiştir. Optimum katalizör belirlendikten sonra, sıcaklık, molar besleme oranı ve katalizör konsantrasyonunun reaksiyon ve ayırma performansı üzerindeki etkileri incelenmiştir. Reaksiyon ve ayırma performansları değerlendirilerek, optimum koşullar 90 °C, molar besleme oranı 10 ve 6 g/L katalizör konsantrasyonu olarak tespit edilmiştir. PVMR'nin performansı, aynı koşullarda çalışan kesikli bir reaktör ile karşılaştırılmıştır. Kesikli reaktörde, 90 °C'de, molar besleme oranı 10 ve 6 g/L katalizör konsantrasyonunda %65 furfural dönüşümü ve %51 GVL verimi elde edilirken, PVMR %100 furfural dönüşümü ve %94,21 GVL verimi sağlamıştır. Bu karşılaştırma, PVMR'nin geleneksel kesikli reaktöre göre dönüşüm ve verim artırmada daha etkili olduğunu ortaya koymaktadır. Bu çalışma, furfuraldan GVL üretimi için önerilen sürecin, yüksek dönüşüm ve verim değerleriyle umut vaat eden bir alternatif olduğunu göstermektedir.
In recent years, the interest of industries and consumers in environmentally friendly and sustainable alternatives has increased rapidly. The production of fuels and chemicals derived from renewable resources as an alternative to traditional petroleum-based products is becoming increasingly important. This trend is based on the idea that biodegradable and environmentally friendly products should be preferred. In this context, furfural derived from biomass sources such as agricultural wastes or lignocellulosic materials stands out as a remarkable renewable resource. Furfural is an important intermediate that can be converted into high-value chemicals and in particular can produce a versatile compound such as gamma-valerolactone (GVL). GVL is used as a solvent, fuel additive or intermediate in various industries and has significant potential in this context. Therefore, obtaining GVL from biomass resources is of great importance for the development of industries based on renewable resources. This study has a very unique value both in terms of the pervaporation membrane reactor process used for the GVL synthesis of furfural in a single vessel and in terms of the catalysts used in the reaction. The fact that the selected polybenzimidazole (PBI) membrane has not been previously preferred in both GVL synthesis and pervaporation membrane reactor application increases the originality of this study. The catalyst synthesis is also pioneering in terms of establishing a hybrid production method in terms of the hydrophilic membrane used and determination of the optimum reaction conditions. At the same time, all experiments were carried out in a batch reactor in order to compare with conventional synthesis methods and the results were comprehensively interpreted. In this study, the use of bifunctional H₃PW₁₂O₄-UiO-66 catalyst for the synthesis of gamma-valerolactone (GVL) from furfural was investigated. Membrane was prepared using PBI polymer and H₃PW₁₂O₄-UiO-66 catalysts containing different amounts of H₃PW₁₂O₄-UiO-66 were synthesised. The catalytic activities of these catalysts were tested in a pervaporation membrane reactor (PVMR) to obtain GVL from furfural and the catalyst containing 2 g H₃PW₁₂O₄ was found to be the most suitable catalyst. After the optimum catalyst was determined, the effects of temperature, molar feed ratio and catalyst concentration on reaction and separation performance were investigated. By evaluating the reaction and separation performances, the optimum conditions were determined as 90 °C, molar feed ratio of 10 and catalyst concentration of 6 g/L. The performance of PVMR was compared with a batch reactor operating under the same conditions. In the batch reactor, 65% furfural conversion and 51% GVL yield were obtained at 90 °C, molar feed ratio of 10 and 6 g/L catalyst concentration, while PVMR achieved 100% furfural conversion and 94,21% GVL yield. This comparison reveals that PVMR is more effective in increasing conversion and yield than the conventional batch reactor. This study shows that the proposed process for GVL production from furfural is a promising alternative with high conversion and yield values.
In recent years, the interest of industries and consumers in environmentally friendly and sustainable alternatives has increased rapidly. The production of fuels and chemicals derived from renewable resources as an alternative to traditional petroleum-based products is becoming increasingly important. This trend is based on the idea that biodegradable and environmentally friendly products should be preferred. In this context, furfural derived from biomass sources such as agricultural wastes or lignocellulosic materials stands out as a remarkable renewable resource. Furfural is an important intermediate that can be converted into high-value chemicals and in particular can produce a versatile compound such as gamma-valerolactone (GVL). GVL is used as a solvent, fuel additive or intermediate in various industries and has significant potential in this context. Therefore, obtaining GVL from biomass resources is of great importance for the development of industries based on renewable resources. This study has a very unique value both in terms of the pervaporation membrane reactor process used for the GVL synthesis of furfural in a single vessel and in terms of the catalysts used in the reaction. The fact that the selected polybenzimidazole (PBI) membrane has not been previously preferred in both GVL synthesis and pervaporation membrane reactor application increases the originality of this study. The catalyst synthesis is also pioneering in terms of establishing a hybrid production method in terms of the hydrophilic membrane used and determination of the optimum reaction conditions. At the same time, all experiments were carried out in a batch reactor in order to compare with conventional synthesis methods and the results were comprehensively interpreted. In this study, the use of bifunctional H₃PW₁₂O₄-UiO-66 catalyst for the synthesis of gamma-valerolactone (GVL) from furfural was investigated. Membrane was prepared using PBI polymer and H₃PW₁₂O₄-UiO-66 catalysts containing different amounts of H₃PW₁₂O₄-UiO-66 were synthesised. The catalytic activities of these catalysts were tested in a pervaporation membrane reactor (PVMR) to obtain GVL from furfural and the catalyst containing 2 g H₃PW₁₂O₄ was found to be the most suitable catalyst. After the optimum catalyst was determined, the effects of temperature, molar feed ratio and catalyst concentration on reaction and separation performance were investigated. By evaluating the reaction and separation performances, the optimum conditions were determined as 90 °C, molar feed ratio of 10 and catalyst concentration of 6 g/L. The performance of PVMR was compared with a batch reactor operating under the same conditions. In the batch reactor, 65% furfural conversion and 51% GVL yield were obtained at 90 °C, molar feed ratio of 10 and 6 g/L catalyst concentration, while PVMR achieved 100% furfural conversion and 94,21% GVL yield. This comparison reveals that PVMR is more effective in increasing conversion and yield than the conventional batch reactor. This study shows that the proposed process for GVL production from furfural is a promising alternative with high conversion and yield values.
Açıklama
Anahtar Kelimeler
Pervaporasyon membran reaktör, Gama-Valerolakton, Furfural, Pervaporation membrane reactor, Gamma-Valerolactone